

2

﻿

HOWARD GOULD

SYSTEMS ANALYSIS
AND DESIGN

Download free eBooks at bookboon.com

3

Systems Analysis and Design
1st edition
© 2016 Howard Gould & bookboon.com
ISBN 978-87-403-1417-5
Peer review: Dr. Amin Hosseinian Far at Leeds Beckett University

Download free eBooks at bookboon.com

http://bookboon.com

SYSTEMS ANALYSIS AND DESIGN

4

Contents

4

CONTENTS

	 Acknowledgements	 7

	 Foreword	 8

1	� Introduction to systems analysis and design	 9

1.1	 What is an information system?	 9

1.2	 The system development life cycle	 12

1.3	 Summary	 21

2	 Systems analysis	 23

2.1	 Requirements modelling	 23

2.2	 Functional decomposition	 24

2.3	 Identifying functions and processes	 25

2.4	 Dataflow diagram notation	 28

2.5	 Drawing a physical DFD	 31

2.6	 DFD errors	 33

2.7	 Drawing a logical DFD	 37

2.8	 Levelled data flow diagrams	 40

Download free eBooks at bookboon.com Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

https://subsites.bookboon.com/email/b/2c0817b4-f5c9-4f95-aceb-48efe083e8cb?utm_source=bookadvertisment

SYSTEMS ANALYSIS AND DESIGN

5

Contents

2.9	 The context (level 0) diagram	 43

2.10	 The data dictionary	 44

2.11	 Process specification	 46

2.12	 Decision trees	 46

2.13	 Decision tables	 47

2.14	 Structured English	 50

2.15	 Requirements catalogue	 53

2.16	 Summary	 56

3	 Object oriented analysis	 57

3.1	 Objects and classes	 58

3.2	 Use case modelling	 63

3.3	 Class diagram	 69

3.4	 Sequence diagrams	 70

3.5	 State machine diagrams	 72

3.6	 Activity diagrams	 73

3.7	 Business process modelling	 74

3.8	 Summary	 76

4	 Systems design	 77

4.1	 Data design	 78

4.2	 Entity modelling	 80

4.3	 Normalisation	 86

4.4	 Identifying relations	 91

4.5	 Data table structures	 95

4.6	 Human-computer interaction	 98

4.7	 System architecture	 108

4.8	 Network topology	 111

4.9	 Design documentation	 114

4.10	 Summary	 115

5	 Systems implementation	 116

5.1	 Software design	 117

5.2	 Software development and testing	 123

5.3	 Documentation and training	 124

5.4	 System changeover	 125

5.5	 Summary	 128

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

6

Contents

6	 Systems maintenance	 129

6.1	 User support and training	 129

6.2	 Software maintenance	 130

6.3	 System performance	 131

6.4	 System security	 132

6.5	 System termination	 135

6.6	 Summary	 135

7	 Bibliography	 136

8	 Appendices	 139

8.1	 Appendix A – Cost benefit analysis	 139

8.2	 Appendix B – Normalisation template	 142

8.3	 Appendix C – Project Management	 143

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

7

Acknowledgements

ACKNOWLEDGEMENTS

I should like to express my gratitude to Dr. Amin Hosseinian Far at Leeds Beckett University
(formerly known as Leeds Metropolitan University) for reviewing the manuscript. The idea
for this book evolved from teaching systems analysis and design to undergraduate computing
students for many years.

The majority of the modelling diagrams presented in this book have been drawn using the
QSEE SuperLite v1.1.2 CASE tool which is free to download from http://www.leedsbeckett.
ac.uk/qsee/

Trademarks

Some of the product and company names used in this book have been used for the purpose
of identification only and may be trademarks or registered trademarks of their respective
manufacturers and sellers.

PRINCE2® is a registered trademark of AXELOS Limited.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or
other countries.

SSADM is a registered trademark of the Office of Government Commerce (OGC) an office
of the UK treasury.

Unified Modelling Language and UML are either registered trademarks or trademarks of
Object Management Group, Inc. in the United States and/or other countries.

Download free eBooks at bookboon.com

http://www.leedsbeckett.ac.uk/qsee/
http://www.leedsbeckett.ac.uk/qsee/

SYSTEMS ANALYSIS AND DESIGN

8

Foreword

FOREWORD

This book has been written to provide a concise introduction to systems analysis and design
for students studying computing, IT or business related courses. Similarly, others who need
to work with systems analysts, designers or software developers when commissioning or
whilst using a new information system may benefit from an understanding of this content.

The information is presented in a form that makes it easy to grasp the essential principles
and techniques and to apply these within an information system development project.

Contents cover the full system development life cycle and include systems analysis using
structured analysis techniques and object modelling with the unified modelling language
(UML). The newer agile approaches to systems development are also introduced. Also
included is system design, incorporating data design, human computer interaction and
system architectures, along with coverage of system implementation and maintenance. A
brief introduction to IT project management techniques is also included as an appendix.

Further supporting materials can be found at the author’s website http://howard-gould.co.uk/.

Download free eBooks at bookboon.com

http://howard-gould.co.uk/

SYSTEMS ANALYSIS AND DESIGN

9

Introduction to systems analysis and design

1	� INTRODUCTION TO SYSTEMS
ANALYSIS AND DESIGN

On completion of this chapter you should be able to:

•	 identify the components of an information system
•	 understand the purpose of systems analysis
•	 be aware of the role of the systems analyst
•	 understand the systems development life cycle.

Information technology (IT) based information systems (IS) are essential to all types of
organisations and in order for these systems to be of benefit they must be based on well-defined
requirements and designed and built using systems analysis and design (SAD) processes.

1.1	 WHAT IS AN INFORMATION SYSTEM?

An information system can be defined as a set of interrelated components that function to
provide required information for a specified purpose.

A system receives input data which is processed, resulting in meaningful information –
output. (In some cases this output may be data to be used as input to another system). An
information system, shown in Fig 1.1 below, will have a control mechanism which regulates
the inputs and processes based on feedback from the outputs. A thermostat which regulates
a heating system is a good example of this. Systems work within boundaries and operate
within an environment. Large systems may comprise a number of sub-systems which work
together to support the overall function of the main system.

 Feedback

Input: Data Output: Information

Processes

Control

Storage

Fig 1.1 Elements of an Information System

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

10

Introduction to systems analysis and design

The following diagram illustrates the basic elements of a payroll system. In this example,
typical inputs would include an employee’s hours worked and their tax code. This data,
along with previously stored data such as pay rates and employee details, would be used
within system processes such as “Calculate Tax” and “Calculate Pay” in order to calculate
the employees’ pay. Some of these calculated pay details would also be used as feedback
which will be used to influence future calculations for tax etc.

Here the system boundary relates to the business and its employees using the system. However,
the environment it operates within includes outside agencies such as the tax agency.

Calculate Pay

Calculate Tax

Control

Output:

Monthly
Pay
Details Employee Details

Pay Rates

Input:

Hours
Worked,

Tax Code

Fig 1.2 Example Payroll System

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

11

Introduction to systems analysis and design

The main components of an information system are:-

Input – the data that comes from the environment that the system will be operating in.

Process – operates on the inputs and transforms them into outputs, e.g. an application for a
driving licence results in a driving licence being issued following processing.

Storage – for data/information.

Output – the results of a process.

Feedback – an output that is fed back into the system to alter the control of the processes.

Control – regulates the system using the ‘feedback’ to ensure the system operates
to meet its purpose.

Boundary – the limit or scope of the system.

Environment – the area in which the system operates. This may include other systems or
other organisations.

Hardware – the computers and other data input and output devices.

Software – Programs, operating systems.

Data – input values and information output.

Communication – networking infrastructure, the Internet.

People – system analysts, software developers, system users.

A number of stakeholders are involved in the system development process, including:

System requester – usually a client or senior manager
System user – person who will use the system
System analyst – person who analyses and designs information systems
System developer – person who designs, produces and tests software.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

12

Introduction to systems analysis and design

12

1.2	 THE SYSTEM DEVELOPMENT LIFE CYCLE

The traditional approach to acquiring an information system is to use structured analysis
processes within the system development life cycle (SDLC). Structured analysis relies on
process models which show how data flows into a system and is processed by applying
business rules, which in turn leads to data being output as required information. The systems
analyst (SA) plays a leading role throughout the systems development process. A systems
analyst needs good analytical skills in order to identify problems and consider effective
solutions, and should also have good communication and interpersonal skills in order to
communicate effectively with a wide range of stakeholders ranging from senior managers
to operational employees (system users).

In recent times newer development approaches have become more team-based, utilising both
IT staff and system users to help speed up the process and so cut costs. Joint application
design (JAD) involves a group of users meeting intensively with systems analysts to help
with the information gathering and the system requirements definition process. Similarly,
rapid application development (RAD) (Martin, 1991) aims to speed up the SDLC, with
users being involved in the design and development tasks in a more interactive, iterative
way, which means that users can give feedback much sooner on the developed system than
in the traditional SDLC.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read more

Designed for high-achieving graduates across all disciplines, London Business School’s Masters
in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to
work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access
to the School’s network of more than 34,000 global alumni – a community that offers support and
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for
top-performing
graduates

* Figures taken from London Business School’s Masters in Management 2010 employment report

http://www.london.edu/mm/

SYSTEMS ANALYSIS AND DESIGN

13

Introduction to systems analysis and design

A newer alternative to structured analysis is object-oriented analysis and design (OOAD)
which focusses on identifying real-world objects used in a system; these objects combine
business processes with the data that they use. The O-O approach tends to be adopted when
a system is going to be developed using O-O programming languages.

The traditional systems development life cycle is primarily a sequential process which is often
referred to as a waterfall model (Royce, 1970) as it is based on a plan formed at the start
of the project, whereby each phase of the SDLC is allocated a period of time to complete
and then the outputs are fed through to the next phase until the system is completed.
Appendix C gives an overview of project planning.

The SDLC has five main phases, as shown in the diagram below:

1. Systems
Initiation

2. Systems
Analysis

3. Systems
Design

4. Systems
Implementation

5. Systems
Maintenance

Fig 1.3 Traditional Systems Development Life Cycle

Note. There are a number of variations of the SDLC, with some showing more phases and
some including iteration of a phase with the previous one, however the same activities are
included in all.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

14

Introduction to systems analysis and design

More recently Agile approaches (Beck K., et al, 2001) to systems development have become
established as a flexible alternative to the traditional SDLC. They follow an incremental/
iterative construction approach whereby small software prototypes are enhanced a number
of times following regular review meetings with stakeholders (called “scrums”, named after
the game of rugby) until it becomes an acceptable product. The iterative construction phase
includes design, code and test activities and usually has a short time period of one to four
weeks called “sprints”. The Agile approach aims to produce working software as soon as
possible whilst allowing a more adaptive form of planning which caters for changes to system
requirements. (Ambler, 2009–12) provides a more detailed explanation of Agile Life Cycles.

 System

Initiation
Construction Review Production

Fig 1.4 A simple Agile Development Life Cycle

The following is a brief summary of the phases of the traditional SDLC:

Systems Initiation

The systems initiation phase is the starting point for a new system and is invoked following
a system request, backed by a business case which gives reasons for the request; this usually
comes from a senior manager or client. The system request is a formal document which
outlines the main requirements for a new system, or changes to an existing one. The system
request is often driven by the need for IT systems which help the organisation to meet
its strategic objectives. These generally relate to a wish to improve the effectiveness of the
existing business systems by means of offering better service or performance, or to the need
to comply with new external demands, e.g. government legislation. The system request is
often produced by the organisation’s IT department or an outside consultancy following
consultation with the senior managers, clients and other key stakeholders.

Once a system request is received by the IT department (or, depending on the organisation
and its resources, possibly an outside software consultancy) an initial investigation is
undertaken to see whether the requirements can be satisfied by an IT solution. This is
usually undertaken by a systems analyst and involves undertaking a feasibility study to
see whether in fact the project is viable, as there are a number of factors that need to be
considered before approval is given. These include whether the requirements can be satisfied
economically e.g. within the proposed budgets (development and operational).

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

15

Introduction to systems analysis and design

15

A cost benefit analysis (Appendix A) is usually undertaken to ensure that the proposed
system would be cost effective, though in some cases the benefits of a new system may stem
from intangible benefits that are not easy to cost. Technical and organisational restrictions
need to be assessed, which includes checking that the proposed system can handle the
expected volumes of data and user numbers, whilst maintaining acceptable performance
levels. There also needs to be adequate availability of human resources such as development
staff and technical resources. Ethical consideration is also given to ensure that the system
will be legally, commercially and socially acceptable.

Following the initial investigation, the analyst may decide that the system requirements can
be satisfied by making better use of the existing IT systems or altering existing business
procedures, thus negating the need for a new system. If, however, a new system is deemed
necessary and feasible then senior management will give approval for the system development
process to proceed. A more detailed analysis of requirements will be undertaken during
phase 2 of the SDLC – Systems Analysis.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Started

Go to www.helpmyassignment.co.uk for more info

Get a higher mark
on your course
assignment!
Get feedback & advice from experts in your subject
area. Find out how to improve the quality of your work!

http://www.helpmyassignment.co.uk

SYSTEMS ANALYSIS AND DESIGN

16

Introduction to systems analysis and design

Note. The feasibility study may involve considering a number of alternative approaches to
satisfying the requirements. Each feasible approach will be included within the feasibility
report. The analyst will indicate the advantages and disadvantages of each approach and
make a recommendation, though ultimately the decision as to which approach will be selected
will be made by the senior management or client.

Systems Analysis

The systems analysis phase is undertaken by one or more systems analysts and is used to
identify the detailed system requirements in order to produce a requirements specification.
This specifies what needs to be included in the new system to meet the system users’
requirements. In order to develop the requirements specification, requirements capture and
modelling activities are undertaken. These involve identifying what data is needed by the
system (inputs/outputs) and the processes (business rules) which are needed to process the
data and produce the required information outputs. Additionally, any performance and
security requirements will also be identified.

Note. In the early days of IT systems development, a system was specified by the analyst
in the form of lengthy textual descriptions. These were often misinterpreted by developers
and users, frequently resulting in systems being produced that did not meet the users’
requirements. As the users often did not see the system until it was complete, any
misinterpretation of the users’ requirements proved costly to rectify. Current system
modelling methods incorporate diagrams, which helps to reduce the amount of text and
potential for misinterpretation – a case of a picture being worth a thousand words.

This information is arrived at following fact-finding activities undertaken by the analyst,
including meetings with the relevant stakeholders of the new system to establish what they
require. Other fact-finding techniques include questionnaires, observation of existing business
processes and reviewing existing system documentation, including collecting sample system
documents. The meetings may take place on an individual basis or during a JAD session
with a number of people present.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

17

Introduction to systems analysis and design

Where a new system is replacing an existing system, the analyst will initially observe and
model the existing system to help gain a better understanding of the users’ needs and any
existing problems. The analyst will record all relevant information, as this will be referenced
throughout the SDLC. This information is usually stored within a computer aided software
engineering (CASE) tool as these allow the analysts and other stakeholders to access the
important system requirements and design information quickly and easily. Some CASE tools
can also use this model information to automatically produce software elements needed for
the new system.

The requirements specification is used to build a logical model which will represent what
needs to be produced (but not how). In the case of structured analysis this will include
process and data modelling which includes data flow diagrams (DFDs) along with business
process descriptions.

Note. An alternative modelling toolset is the OMG’s unified modelling language (UML)
which is a flexible modelling language that has become established as the norm for O-O
development projects. It has 13 diagram types, although typically only a few will be produced
for a given system.

Many organisations do not enforce a modelling methodology rigidly so analysts/developers
are often free to choose appropriate models/diagrams for the task in hand. The aim should
be to ensure that whatever modelling methods are undertaken they will be understood by
those who will be using them.

Systems Design

The systems design phase is used to specify in detail the system to be built, based on
the requirements specification identified in the systems analysis phase, so that the system
developers are clear about what they need to produce. This phase involves producing physical
process diagrams (DFDs) that show how the data will be processed in the new system.
The business rules for the processes will also be specified and these may include descriptive
text, pseudo-code (written using structured English), decision trees and decision tables. In
addition, screen and report layouts will be included to show how the required information
will be input to and output by the system.

In most systems there will also be a need to store data within a database so at this stage
an entity relationship model (ERM) will be produced which will be used to identify the
database tables and their data items. This information forms the data dictionary which is
usually stored within a CASE tool. Although much of this work will be undertaken by the
systems analyst, some will be in consultation with system stakeholders to ensure that the
proposed design will satisfy their requirements.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

18

Introduction to systems analysis and design

18

When the design has been completed, the developers will work from the design specification
and commence the development work, coding and testing the software. The choice of
programming language, e.g. Java, C++ etc. used to develop the code will depend on the type
of application being developed and other factors such as available expertise and conformity
to the organisation’s development environment standards.

When software is developed it needs to be thoroughly tested to ensure that it performs as
expected and satisfies the specified requirements. Initial testing will relate to specific modules
or programs; when these have been satisfactorily completed integration testing can take place,
which involves testing all the modules and programs working together, as they will do when
the complete system is implemented. During this phase, if new hardware or networking is
required to support the system this will be acquired and tested to ensure that the system
will function appropriately when in use. Finally, acceptance testing will take place. This
involves asking intended users to trial the system to ensure that they are satisfied before it
is released for use. It may be necessary to make some minor amendments at this stage, but
if the earlier analysis and design phases have been carried out accurately there should be
no need for any major changes.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/icoast

SYSTEMS ANALYSIS AND DESIGN

19

Introduction to systems analysis and design

Note. In some cases, the new system may be implemented using an existing product or
package which is purchased or acquired from an external source or vendor. This may require
some customisation, so will also need to undergo testing to ensure it functions in accordance
with requirements.

Systems Implementation

Following acceptance testing the system will be implemented (handed over for use) in its
intended environment. In order to prepare the users, it may be necessary for training on
the new system to take place first. An implementation strategy will be specified which will
indicate whether the new system will operate in parallel with the existing system for a
period of time in case there are unforeseen problems with the new system, though in the
case of a completely new system this is not possible. In some situations, it is not feasible
to run duplicate systems, so where possible, the new system is rolled out in stages, in order
to minimise risk.

Systems Maintenance

Once the new system has been implemented and is in normal use it is monitored, and
any minor problems or bugs (errors) dealt with as soon as possible. Reviews will also
be scheduled to ensure that the system is performing as expected. If any non-essential
additional requirements or changes are requested these will be considered and scheduled
for implementation if approved. In due course, when the system reaches a point at which
it is again no longer meeting the needs of the organisation, it may be discarded and if a
new system is needed to replace it the SDLC will be restarted.

Note. Some organisations have systems that have been in use for many years and there
may be a reluctance to completely replace these systems with new ones. These are often
referred to as “legacy” systems. Often, legacy systems have poorly structured software and
limited documentation. In order to continue to use these systems they can sometimes be
reverse-engineered by software tools which analyse and restructure the code. This approach
aims to provide a better understanding of the software and so aids with its integration with
newer systems.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

20

Introduction to systems analysis and design

Advantages and disadvantages of approaches / methods

Structured Analysis

Advantages:

Long established

Easier project planning and monitoring

Requirements defined and agreed early in the SDLC

Software designed based on a full understanding of all requirements.

Disadvantages:

Possibility design requirements not what the customer expects

If problems encountered with the system, cost to correct can be high as the client may only
see the system when it is complete.

Object-Oriented Analysis

Advantages:

Closer representation of real world objects

Aids development using O-O software languages

O-O software easier to maintain and with greater re-usability potential.

Disadvantages:

Can be difficult to identify all classes and objects

Not ideal for relational database designs

Models not as easy to understand for none technical users.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

21

Introduction to systems analysis and design

21

Agile

Advantages:

Regular system user feedback

Easier to adapt to changing situations

Quicker development.

Disadvantages:

Limited planning

Potential for scope creep – adding features and going over time and cost plans.

Lack of emphasis on design and documentation.

1.3	 SUMMARY

Information systems play an important role in supporting an organisation’s aims. In order
for them to be effective they must be based on a detailed set of requirements which have
been identified using appropriate analysis and modelling techniques.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/ChalmersINTL2016

SYSTEMS ANALYSIS AND DESIGN

22

Introduction to systems analysis and design

Exercise 1

Which of the following are information systems?

a)	 A library catalogue
b)	A motor vehicle
c)	 A student name
d)	Ebay.co.uk

Can you think of any other information systems?

Exercise 1 feedback

a)	 Yes
b)	No – but it could be part of an information system
c)	 No – it is a data value
d)	Yes

Other information systems: Business accounts, stock control, Amazon.com.

Exercise 2

List some possible sub-systems for a university information system.

Exercise 2 feedback

a)	 Student admissions
b)	Student details (personal and academic)
c)	 Course details
d)	Library loans

Exercise 3

Which of the following is the correct systems development life cycle?

a)	 Initiation, design, analysis, testing, implementation
b)	Design, analysis, implementation, maintenance
c)	 Initiation, analysis, design, implementation, maintenance

Exercise 3 feedback

c)	

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

23

Systems analysis

2	 SYSTEMS ANALYSIS

On completion of this chapter you should be able to:

•	 produce a functional decomposition diagram
•	 model a business situation using data flow diagramming (DFD) techniques
•	 specify a process using decision trees, decision tables and structured English
•	 undertake object modelling using the unified modelling language (UML).

2.1	 REQUIREMENTS MODELLING

Following the initial investigation and acceptance of the feasibility study, the systems analysis
phase of the SDLC will commence. This involves requirements modelling, which includes
producing the requirements specification which describes the system to be developed. The
specification indicates functional and non-functional requirements and may include a number
of models and diagrams that describe how the system will operate. The specification is a
formal document which forms an agreement between the developers and the users. In order
to help understand the system under investigation and the system that is required, models
are produced.

These models include various diagrams, e.g. DFDs or UML diagrams, which are used to
communicate with the relevant stakeholders, i.e. users and developers, to ensure that they
accurately reflect the system under consideration. The diagrams may be changed a number
of times following feedback from stakeholders until all agree that they accurately represent
the system. The diagrams are usually produced using a suitable CASE tool, though initial
drafts may be drawn by hand. In order to produce the models, the analyst will need to
have a good understanding of the business area under consideration and to achieve this will
require a number of meetings and observations and possibly other fact – finding activities
including business document reviews and user surveys.

Where the new system is to be based on an existing system it is usual to first produce a
physical model which represents the physical view of the current implementation, in order
to gain an understanding of how the system functions. This model can then be analysed and
converted to form a logical model which allows the analyst to view the actual information
required to satisfy the requirements for the new system. Later in the system design phase
the logical model can be used to help produce a physical model of the proposed system
which will show how the new system will be implemented.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

24

Systems analysis

24

To understand the difference between a physical view and a logical view let us consider a
business system that sends invoices to its customers. The physical view represents the actual
physical implementation:- the system produces a printed invoice which is then sent in the
mail to the customer. However, from the logical viewpoint the system is just communicating
invoice details to the customer. By focussing on the logical view the essential information
requirements can be established. During the later design stage a decision will be made on
how best to implement the above requirement. This may result in the invoice being emailed
to the customer or giving them access to the system via the Internet so they can view the
invoice details at any time, or both.

2.2	 FUNCTIONAL DECOMPOSITION

A major role of the systems analyst is fact-finding, which includes understanding the structure
of the organisation. This involves investigating the area of study and breaking it down to
identify its business processes, referred to as “top down decomposition”. These processes
can be shown using a functional decomposition diagram. This aids understanding and
provides a means of communication with others whilst helping to establish the information
requirements. A basic example showing some higher level business functions and some of
their processes is shown below. Note that a complete diagram would have more sub-levels
showing the business processes undertaken for each functional area:

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids

SYSTEMS ANALYSIS AND DESIGN

25

Systems analysis

Organisation

Finance

Invoicing

Check credit

Raise invoice

Purchasing

Manufacturing

Design

Testing

Production

Sales

Fig 2.1 Functional decomposition diagram

2.3	 IDENTIFYING FUNCTIONS AND PROCESSES

The first step is to break down the business into its main areas of activity or functions. These
may be concerned with managing business resources such as Finance, Stock or Human.
Alternatively, they may be based on the life cycle of a product or service e.g. Marketing,
Manufacturing, Distribution. The major functional areas or activities will depend on the
nature of the organisation under investigation.

Business processes usually relate to a specific business entity which is used within a business
function. Here are some examples of business processes:-

-- Check Credit
-- Raise Invoice
-- Receive Payment

Note the structure of the business processes; they should consist of a verb and a singular
object e.g. Pay Employee.

To identify business processes, consider the life cycle of the business entities e.g. for a hotel
you might identify:

-- Receive Booking
-- Check in Guest
-- Allocate Room
-- Check out Guest

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

26

Systems analysis

The functional decomposition processes will be used within the dataflow diagrams (DFDs).

Exercise 1

What would you suggest are the major activities of :-

a)	 A library
b)	A university
c)	 A hospital

Exercise 1 feedback

a)	 Book acquisition, loans and returns, reservations, stock management
b)	Marketing, recruitment, enrolment, teaching, examinations, resources
c)	 Admissions, staffing, patient care, maintenance

Exercise 2

Suggest some business processes for a bicycle manufacturer to be added to those
identified below:

--
-- Design Bicycle

--
-- Produce Bicycle

--
--
-- Sell Bicycle

--

Exercise 2 feedback

-- Research Market
-- Design Bicycle

-- Build Prototype
-- Produce Bicycle

-- Advertise Bicycle
-- Distribute Bicycle
-- Sell Bicycle

-- Bicycle Aftersales Support

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

27

Systems analysis

27

Exercise 3

For the business process Recruit Employee decompose the process by completing the
following:

a)	 Advertise _________?
b)	__________? Candidate
c)	 Appoint ___________?

Exercise 3 feedback

a)	 Advertise Vacancy
b)	 Interview Candidate
c)	 Appoint Candidate

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Agilent Technologies, Inc. 2012 u.s. 1-800-829-4444 canada: 1-877-894-4414

Teach with the Best.
Learn with the Best.
Agilent offers a wide variety of
affordable, industry-leading
electronic test equipment as well
as knowledge-rich, on-line resources
—for professors and students.
We have 100’s of comprehensive
web-based teaching tools,
lab experiments, application
notes, brochures, DVDs/
CDs, posters, and more. See what Agilent can do for you.

www.agilent.com/find/EDUstudents
www.agilent.com/find/EDUeducators

http://www.agilent.com/find/EDUeducators

SYSTEMS ANALYSIS AND DESIGN

28

Systems analysis

2.4	 DATAFLOW DIAGRAM NOTATION

As mentioned in section 2.1 above, in order to ascertain the requirements for a new system
it is important to be able to understand how the current system operates. To achieve this a
physical model can be produced using dataflow diagramming (DFD) techniques. The DFD
allows you to show business processes and how data flows between them. There are a number
of DFD notations in use, e.g. Gane and Sarson, Yourdon De Marco and SSADM®. Although
each notation uses slightly different symbols the diagrams are composed and interpreted in
similar ways so you should be able to interpret a diagram based on any notation without
difficulties after following this text. This text uses the SSADM notation and the diagrams
presented have been produced using the QSEE Superlite version 1.1.2 case tool, which is
available to download from http://www.leedsbeckett.ac.uk/qsee/

SSADM® – Structured Systems Analysis and Design Method was a methodology developed
for use in the analysis and design of information systems and was widely used for UK
government projects from the 1980s onwards.

Depending on the size and complexity of the system being modelled a number of interrelated
DFDs showing different levels of detail will be produced in order to show all the information
in a manageable form. This involves applying a top-down decomposition approach which
identifies the higher level business processes, and expanding each of these to show the lower
level processes on separate DFDs, continuing until you have a set of primitive processes
which cannot be broken down any further.

The DFD uses symbols to show the four key business process elements: processes, data
flows, data stores and external entities.

A process is an activity of interest within the system that involves transforming data and
producing an output. It is defined using a verb and an object, e.g. Create Order. In effect,
a process represents the business rules that are applied to process data in order to achieve
the required output.

The process symbol will be one of the following, depending on the chosen notation:

SSADM Gane and Sarson Yourdon

CREATE
ORDER

CREATE
ORDER

Fig 2.2 Process symbols

Download free eBooks at bookboon.com

http://www.leedsbeckett.ac.uk/qsee/

SYSTEMS ANALYSIS AND DESIGN

29

Systems analysis

Each process is given a process name – e.g. Create Order – and an identifier, e.g. 1, 2, 3 etc.
In SSADM the process also has a location which indicates the unit or person responsible
for carrying out the process e.g. Accounts Department.

A dataflow is a single item of data or a logical group of data items that is transferred when
a process takes place. This is shown as an arrowed line (in all three notations) showing the
direction the data travels, with a suitable label describing the data items. Note. Double
arrowed lines are permitted but only on higher level DFDs to show that the data items
may be transferred in both directions between processes.

ORDER

 Fig 2.3 Dataflow symbol

A data store is a set of data items stored for use by one or more processes over time.

SSADM Gane and Sarson Yourdon

ORDERS ORDERS

Fig 2.4 Data store symbols

Note. On a current system physical DFD, data stores are labelled with an “M”, “D” or “T”.
“M” is used to represent a non-computerised store, e.g. a paper file. “T” represents a
transient store, i.e. one where data resides temporarily just for use between two processes.
“D” represents a data store that is computerised. Each data store label includes a unique
identifying number e.g. M1, D1, T1.

An external entity is an organisation, person or a system that is outside of the system under
consideration but which interacts with it, e.g. a customer from another organisation who
places an order which is processed by the system under consideration.

 SSADM Gane and Sarson Yourdon

CUSTOMER CUSTOMER

Fig 2.5 External entity symbol

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

30

Systems analysis

30

Note. SSADM external entity identifiers use a lower-case letter e.g. a, b, c.

To aid diagram readability it is permissible to use duplicate data stores and external entities,
these duplicate symbols are shown as follows:-

M1 Orders file

Fig 2.6 Duplicate symbols

Diagram labelling reminders:

•	 Remember to use a verb and a singular object for processes

•	 Use clear, meaningful names

Note Gane and Sarson and Yourdon notations use upper case labels, though it is not
uncommon to see lower and mixed case labels used on diagrams. However, you should be
consistent with your labelling, i.e. use either upper case or mixed case but not both.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

SYSTEMS ANALYSIS AND DESIGN

31

Systems analysis

2.5	 DRAWING A PHYSICAL DFD

The highest level DFD is called the context diagram or Level 0 diagram. This shows the
area of activity being investigated and uses only one process symbol, which represents the
area (system) and all the external entities which interact with it. The next level down is
referred to as Level 1. This shows the main processes and their data stores. If any of these
processes are further decomposed, their sub-processes will appear on a Level 2 diagram and
so on. Analysts often start with the Level 1 DFD, as it is not usually possible to identify
all the external entities and their data flows which are needed for the context diagram until
the system has been analysed in some detail. The context diagram and levelling process are
explained in more detail later.

Let us look at how these symbols can be used to produce a Level 1 physical DFD to
represent the following business process:

“A university loans equipment (e.g. video cameras) to students, on submission of a booking
form containing details of what is required. The university technician checks the item’s
availability against an inventory list before issuing the item, with a loan receipt, to the student.”

This is modelled as follows:-

Fig 2.7 Equipment loans physical DFD

This DFD is interpreted as the student’s booking form enters the system as an input to the
“Issue Equipment” process, which is carried out by the technician. This process involves
reading the booking form data (for the item required) and then checking the inventory
list which is obtained from the data store (an input to the process) in order to check the
requested item’s availability. Assuming the item is available for loan, the item and a loan
receipt are issued to the student (an output). The actual item loaned is not shown on the
dataflow to the student as the DFD is only concerned with showing the data involved, i.e.
the loan receipt, as this indicates an item has been issued.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

32

Systems analysis

Note. The box enclosing the process and data store shows the boundary of the higher level
process (or system) being modelled, although the external entity “student” is beyond the
boundary it interacts with the process directly.

Now let us look at a different Level 1 physical DFD scenario which shows how processes
are linked:-

A vehicle rental company hires out motor vehicles to clients. The company receives telephone
requests from customers to hire a specific car type for a period of time. When a request
is received by the company, the Rentals Manager checks to see if a suitable vehicle will be
available before issuing a rental confirmation; this involves checking the vehicle file. If a
vehicle is available, a rental form is completed and stored in the rentals file.

The Garage Manager uses a copy of the rental form to prepare the vehicle for the client,
a copy of which is then given as a receipt to the client when they collect the car. When a
vehicle is returned, the garage manager checks the vehicle and signs the copy rental form,
before amending the vehicle file to show the vehicle return.

This is modelled as follows:-

Fig 2.8 Vehicle rentals physical Level 1 DFD

Note The physical DFD is so called because it shows the physical nature of the data objects,
e.g. Order form, Sales folder etc.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

33

Systems analysis

33

2.6	 DFD ERRORS

When drawing DFDs you must ensure that all external entities, processes, data stores and
data flows are clearly labelled and that dataflow lines do not overlap – use duplicate symbols
if necessary to avoid this.

Take care to avoid incorrect data flows when producing your DFD, as shown by the
following examples.

1.	

Direct interaction between external entities is not permitted. This must be via a process
if required.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/gautrain

SYSTEMS ANALYSIS AND DESIGN

34

Systems analysis

2.	

Data from an external entity cannot be placed directly into a data store – it must be
transferred via a process.

3.	

Data cannot be transferred directly from one data store directly to another – it must be
transferred via a process.

4.	

A Black hole – data must be transformed by a process, there must be an output to a data
store, another process or to an external entity.

5.	

Divine intervention – in order for data to be output from a process, some data must be input.

6.	A Grey hole is one where an input would not be able to produce the required
output e.g. to calculate an employee’s pay, inputting a car registration number
would not be relevant.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

35

Systems analysis

7.	A trivial process is one where no data transformation is taking place within the
process e.g.:-

Every process must have at least one relevant input data flow and one output data flow in
order to “transform” the data.

Exercise 4

Complete the following Physical DFD example which represents part of a cycling club enrolment
process.

“The secretary at the cycling club enrols applicants as members as soon as he receives their
signed application form. He updates the members’ file with their form then issues a membership
card. This completes the membership process.”

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

36

Systems analysis

36

Exercise 4 feedback

Note The external entity could alternatively have been labelled as “Applicant”. Although at the
outset of the process the external entity is an applicant, after being accepted they would become
a member and any further interactions with the system would be as a member. The “application
form” data flow to the members’ file could alternatively be labelled “member details” if these
are stored instead of the actual application form.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Item24

SYSTEMS ANALYSIS AND DESIGN

37

Systems analysis

2.7	 DRAWING A LOGICAL DFD

The DFDs shown previously have been compiled in order to give a structured view of an
area of activity from a physical perspective, e.g. Booking form and Loan receipt. As an
analyst you need to be able to detach the physical aspects of the existing system in order
to obtain a logical view of the system to be developed. It is essential to be able to identify
the logical requirements for the new system and not be constrained by the existing system’s
implementation.

Let us now look at how you can “logicalise” a physical DFD to produce a logical DFD.

Use the following steps:

1.	Data flows – examine and replace any mention of a physical representation, e.g.
documents such as forms, with their data items.

2.	Data stores – rename any which refer to physical documents or records.
Consider using business data entity names for the stores, e.g. ‘Customers’ rather
than ‘customer file’. Also ensure that each logical data store is uniquely identified
with a “D” e.g. D1, D2 etc.

3.	Processes – Check each process and remove any reference to people or places
(the location) and remember the processes should not be trivial – they must
represent some data transformation.

Here is a simple example to start with – the cycling club enrolment, using the physical
model shown in exercise 4 above:-

Fig 2.9 Enrol member level 1 DFD

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

38

Systems analysis

Following the three steps:

1.	First look at the data flows:-
Application form – this is a physical document name. The data needed by the process is
actually the applicant member’s information e.g. name, address etc. This can be referred
to as “member details”.

Membership card – this is also a physical item. You could rename this as “membership
confirmation”. In the new system this may take a different form such as an electronic
identification that may be used on a mobile phone or other device.

2.	Data stores:-
Members’ file: The business entity here is “Member” but as you wish to store all the
required information about all the members in the club here then the name “Members” is
appropriate. As all logical data stores are identified with a “D,” its identifier will be “D1”.

3.	Processes:-
Enrol Member: This is acceptable (verb and object), however no location should be
specified so “Secretary” would be removed. The reason for this is that in the new system
the process may be carried out automatically by the system.

The new logical DFD is as follows:-

Fig 2.10 Enrol member logical level 1 DFD

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

39

Systems analysis

39

Note that the data flow from the process to the data store has been renamed “Member
details” rather than “Applicant details” as this is a more appropriate description of the data
at this point in the process.

The “logical” model describes the processes and information that are relevant to the business
or, more specifically, what is needed rather than its form. It forms the basis of further analysis
and design activities.

Exercise 5

Convert the physical level 1 DFD for the vehicle rentals company shown in Fig 2.8 to a
logical level 1 DFD.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

The Stockholm School of Economics is a
place where talents flourish and grow. As one
of Europe’s top business schools we help you
reach your fullest potential through a first
class, internationally competitive education.

SSE RANKINGS IN FINANCIAL TIMES

No. 1 of all Nordic Business Schools (2013)
No. 13 of all Master in Finance Programs
Worldwide (2014)

The journey starts here
 Earn a Masters degree at the Stockholm School of Economics

Stockholm School of Economics

SSE OFFERS SIX DIFFERENT MASTER PROGRAMS!

APPLY HERE

http://s.bookboon.com/hhs

SYSTEMS ANALYSIS AND DESIGN

40

Systems analysis

Exercise 5 feedback

Logical level 1 DFD

2.8	 LEVELLED DATA FLOW DIAGRAMS

As has already been mentioned, using the DFD structured diagramming technique allows
for a top-down approach to modelling so that a DFD can be decomposed (expanded) into
lower levels, each of which shows more detail for each process by separating these into their
sub-processes.

The highest level diagram – Level 0 – is also called the context diagram as it shows the
boundary for the whole system as one process, surrounded by the external entities (the
context) and their data flows that represent the interaction with the system.

The Level 1 DFD shows the main processes and data stores for the area under investigation.

A Level 2 DFD is normally produced for each process shown at level 1, though it is not
always necessary to break every process down to the next level.

Decomposition stops when processes on a diagram are regarded as primitive or elementary
i.e. they can be specified simply using another method such as “Structured English”. (This
is discussed later.)

Processes are numbered on lower levels using the following convention.

If a Level 1 DFD had a process numbered 1 which consisted of 3 sub processes, these sub
processes would be shown on a Level 2 DFD numbered 1.1, 1.2, 1.3.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

41

Systems analysis

If a second Level 1 process with an identifier of 2 had 2 sub processes, these would be
labelled as 2.1 and 2.2 on another Level 2 DFD.

The process at a given level sets the boundary for the DFD at the next lower level. It is
important that the data flows shown on the lower level DFD match those shown on the
higher level. This is referred to as “balancing” the model. CASE tools help to check that
this “balancing” has taken place as they usually transfer the data flows (and data stores)
automatically down to the next level when the subordinate diagram is created.

If a data store is only used by one process (i.e. it is “private” to that process) it would only
appear at the lower level.

External entities are shown at the lower levels if data flows are connected directly to processes
at the lower level.

Let us consider the car rental Level 1 DFD, which has three processes. The “Check rental
process” actually involves three sub processes: check vehicle availability, create rental booking
and inform the client. These sub processes can be shown on a Level 2 diagram as follows:-

Fig 2.11 Check rental level 2 logical DFD

The box around the three processes indicates the boundary of the level 1 process which is
represented by the Level 2 diagram.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

42

Systems analysis

42

Note the consistency between the Level 1 and Level 2 diagrams for the “Check rental”
process.

1.	 In and out data flows are identical on the Level 2 diagram with the process 1 of
the Level 1 diagram.

2.	The two data stores involved with the Level 1 process “Check rental” match at
Level 2 as shown outside the Level 2 boundary (the large box)

3.	The external entity “Client” appears at Level 2 as it is directly associated with
the Level 1 process “Check Rental” on the Level 1 diagram.

On the Level 2 diagram there are new data flows that link the processes together.

Note. If the “Inform client” process also involved storing a copy of the confirmation sent
to the client, this would be represented as a “private” data store called “Confirmations” and
linked with an output data flow from this process to the Client entity. It is referred to as
“private” because it would only be visible at this level if not used by any other processes
at a higher level.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://www.ikea.se/student

SYSTEMS ANALYSIS AND DESIGN

43

Systems analysis

2.9	 THE CONTEXT (LEVEL 0) DIAGRAM

The first diagram in the hierarchy is the Context diagram, which is also referred to as the
Level 0 DFD. This diagram shows the entire area of activity under consideration (the system)
and is often referred to as the scope of the analysis or investigation.

Logically, the context diagram is drawn first so that the extent of the area of investigation
can be identified and the external entities and data flows shown. However, in practice it is
usually easier to start with the Level 1 diagram and then transfer data flows from this and
link them into the single process box on the context diagram.

Using the Level 1 logical DFD for the vehicle rental company would produce the following
context diagram:-

Fig 2.12 Car rentals context diagram

Note the following:-

•	 Only one process symbol appears on the context diagram labelled with the
system name

•	 The process has the identifier number ‘zero’
•	 No data stores are shown on the context diagram
•	 There are four data flows, which match those on the Level 1 DFD for compatibility

As some context diagrams have many data flows, amalgamation is permitted to aid readability,
e.g. the two “Rental details” data flows may be shown below as one but with arrow tips at
both ends of the flow (note this is only permitted on a context diagram).

Rental details

Fig 2.13

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

44

Systems analysis

Important

Always ensure compatibility with the higher level data flow diagram –

•	 Show the boundary to represent the higher level process

•	 Check there are the same number of data flows in and out on each level

•	 Check the same names are used for data flows

•	 Check external entities are compatible

Note If using the QSEE CASE tool you will need to enter the context diagram first, although
it is not always possible to identify all the external entities or data flows at this stage. This
is not a problem as the CASE tool will ensure that any external entities or data flows that
are added to the lower level diagrams, e.g. Level 1 DFD, are automatically added to the
higher level diagram(s) to ensure the diagrams remain “balanced”.

Exercise 6

Produce a context diagram for the cycling club as shown in the Level 1 logical DFD Fig 2.10

Exercise 6 feedback

2.10	 THE DATA DICTIONARY

As the analyst builds the logical model, additional information needs to be captured
and stored for future reference. This collection of information is referred to as the data
dictionary or data repository and is normally stored within a CASE tool, as this allows
for easy reporting and cross checking to see where data items are used. The information
collected includes the data values from the data flows, data stores and the processes. These
data values include data records or data structures, each of which comprises individual
data items or elements.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

45

Systems analysis

45

An example data set (record) for a Client in the vehicle hire system would include the
data items

•	 client name
•	 client address
•	 client home/office telephone number
•	 client mobile phone number
•	 client driving licence id.

Data items are further defined to include a data type, e.g. numeric or textual, and a size,
e.g. maximum number of characters. Additional related information that is often stored
includes expected data volumes, i.e. how many customer records need to be stored, or how
many transactions will be processed in a given period of time, e.g. how many orders will
be processed per day. For each data item, acceptable values or ranges will be noted along
with security details relating to user access rights. All of this information is referred to as
meta-data and is vital for use in later stages of the SDLC.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

http://s.bookboon.com/ericsson

SYSTEMS ANALYSIS AND DESIGN

46

Systems analysis

2.11	 PROCESS SPECIFICATION

Each elementary process from the lowest level DFD needs to be specified in a suitable form
that clearly describes the processing necessary to accomplish its purpose. This information
forms the basis for software specifications which are used in the system design phase. There
are three main modelling techniques available for specifying this process logic: Decision
Trees, Decision Tables and Structured English.

2.12	 DECISION TREES

A decision tree is used to present a graphical representation of all possible conditions and
their actions, as in the following process description which has been identified by a systems
analyst during an interview with the rental manager for a vehicle rental company:

“There are two types of client who rent vehicles, business clients and private clients. Private
clients have to pay for the vehicle rental at the time of the booking, however business clients
are given credit terms. If they have been a client for three or more years, they are allowed
credit up to £10,000; those who have been clients for less than this are allowed £5000 credit.”

This text shows that a number of decisions are made, with set actions being taken depending
on the outcome. Each business situation is identified, in this case whether the hirer is a
business or private client. Each of these may have further branches which represent further
sub-division points. At the ends of the final branches, the action to be taken is specified
as shown here:

Y

N

Client for

 > 3 years

Y

N

Account < 10000

Business

Client

Y

N

Account < 5000 Y

N

Allow rental

Allow rental

Allow rental

Deny rental

Deny rental

Fig 2.14 Decision tree

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

47

Systems analysis

2.13	 DECISION TABLES

A decision table uses a tabular approach to show every condition and its outcome. These
can be set up easily using a spreadsheet program. They are often used by analysts to show
how to process a number of complicated conditions in a form that is easy for others to
understand. In particular, software developers can use them to help develop the code during
the system design phase of the SDLC.

The table consists of four segments as shown below:-

Condition
entry

Action
entry

Condition

Action

Fig 2.15 Decision table

The condition segment lists the conditions or “questions”. The condition outcomes are either
“True” or “False” and are represented by a “Y” or “N”; a dash “-” is used when the outcome
is immaterial. Each condition entry is referred to as a rule and these are usually numbered.

The condition entry segment is used to record the responses to the condition questions as
Y”, “N” or “-”.

An “X” is entered into the action entry alongside the action to be taken under the condition
outcome specified above it. The action entry is left blank if no action is to be taken.

To create a decision table, it is necessary to list all the conditions and note the alternative
answers.

Then calculate the total number of alternatives of the conditions, e.g. for three conditions,
each has two outcomes (“Y” or “N”) so this gives 2 × 2 × 2 = 8.

List the actions in the action segment and place an “X” in the action entry boxes relating
to the appropriate rules.

Let us consider an example process:-

A bank’s decision on whether to dispense money to a customer from a cash dispenser involves
checking that the amount to be withdrawn does not exceed the customer’s account balance.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

48

Systems analysis

48

Fig 2.16 Bank decision table

It is sometimes possible to consolidate the rules when the actions specified for two sets of
rules are identical and the condition entries differ for only one condition. In this example
the two rules can be amalgamated into one. This is accomplished by replacing the “Y” of
the condition with a “-” and deleting the rule which has an “N”. Revisiting the previous
bank example allows for simplification as follows:

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

SYSTEMS ANALYSIS AND DESIGN

49

Systems analysis

Fig 2.17 Consolidated bank decision table

If the balance is not in credit, then the condition “withdrawal amount < balance” is
irrelevant as the action will be the same for both conditions, thereby reducing the number
of condition entries in the table.

Exercise 7

Convert the vehicle rental company decision tree from Fig 2.14 into a decision table.

Exercise 7 feedback

The above decision table shows all 16 possible combination rules but when the rules are
consolidated the result shows that only 5 rules are needed:-

Remember the dash “-“ indicates that the condition entry value is not relevant.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

50

Systems analysis

2.14	 STRUCTURED ENGLISH

The final technique that can be used for describing a primitive process is Structured English.
Whilst decision trees and decision tables show the different branch logic, Structured
English can be used to describe all processing steps. It adopts a modular design approach
and although it looks similar to pseudocode which is used by software developers to help
specify program code, it is not the same, as it is used to identify the main process logic
rather than specific code. Structured English utilises the three logical control structures:
sequence, selection and iteration. These structures are combined in order to define the
processing logic. Structured English aims to provide a clear explanation of the processing
involved, which aids the software developer when designing the code during the systems
development phase of the SDLC.

Structured English uses three logical control structures:

Sequence A sequence is where a number of statements are executed one after the other.
This can be shown diagrammatically as follows:-

Fig 2.18 A sequence structure

Note. Any step of a sequence may consist of other sub-processes which contain logical
structures.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

51

Systems analysis

51

Selection. A selection checks for a condition and, depending on the outcome, performs
one of two steps as follows:-

Fig 2.19 A Selection structure

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

SYSTEMS ANALYSIS AND DESIGN

52

Systems analysis

Iteration (Looping) A process step or steps repeated until a condition is met:-

Fig 2.20 An Iteration structure

Below is a Structured English example. Note that a number of key words are used along
with references to the data items (they are defined in the data dictionary) being processed.

Typical key words which are used include the following:- READ, CREATE, UPDATE,
WRITE, DELETE, OUTPUT, IF, ELSE, ENDIF, REPEAT, UNTIL, WHILE, THEN,
DO WHILE, END WHILE, EQUAL, LT (LESS THAN), LE (LESS THAN OR EQUAL
TO), GT (GREATER THAN), GE (GREATER THAN OR EQUAL TO), AND, OR,
NOT, OPEN, CLOSE, FILE, EXIT.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

53

Systems analysis

CREATE INVOICE

*This process produces an invoice for every completed order; incomplete orders are reported

REPEAT UNTIL (end of file)

READ order file

	 IF (order complete)

		 OUTPUT invoice

	 ELSE

		 Add order no. to incomplete order report

ENDIF

ENDREPEAT

EXIT CREATE INVOICE

Fig 2.21 Structured English process description

Note When using structured English only use the three constructs. Indent statements
for clarity. Place one sequence statement per line. Always use UPPER case for keywords.
Underline or highlight words relating to data dictionary entries. Comment lines start with
a *. Use () to enclose conditions.

2.15	 REQUIREMENTS CATALOGUE

Following identification of the system requirements they will be documented as a set of
requirements catalogue entries using a template similar to the one below. These will be used
in conjunction with the structured analysis and object oriented model diagrams that have
been produced and are usually stored within a CASE tool repository for easy reference.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

54

Systems analysis

54

Requirements Catalogue Entry

System

Author

Requirement Number

Version Number

Requirement Name

Description

Priority

Source

Owner

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

SYSTEMS ANALYSIS AND DESIGN

55

Systems analysis

Issues and Outstanding

Questions

Comments/Suggested

Solutions

Benefits

Related Documents

Related Requirements

Resolution

Fig 2.22 Requirements catalogue entry

The template fields are completed as follows:

•	 System – the proposed system name
•	 Author – the person who has documented the requirement, usually the analyst
•	 Requirement Number – the number or ID which uniquely identifies the requirement
•	 Version Number – used to indicate which version this requirement is as they

may be amended
•	 Requirement Name – a brief name
•	 Description – a description of the functional (essential) requirement in

the user’s words
•	 Non-functional requirements may be included, e.g. transaction response times

which may include acceptable ranges
•	 Priority – e.g. Low, medium, high. Not all requirements are implemented so it

will be necessary to agree essential ones
•	 Source – person or document that identifies the requirement
•	 Owner – person who will take responsibility for the requirement
•	 Issues and Outstanding Questions – issues to be considered
•	 Comments/Suggested solutions – ideas for consideration
•	 Benefits – need to relate to business priorities and the Priority mentioned above

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

56

Systems analysis

•	 Related Documents – refers to other analysis and design documents that have
been produced, e.g. models/diagrams

•	 Related Requirements – refers to other requirements that relate to the same
functional area of the system

•	 Resolution – indicate the outcome of the requirement, i.e. completed, if
discarded, state reason.

Finally, the software requirements specification (SRS) document is produced which
incorporates the above diagrams and documentation. For an example SRS template see
(Wiegers, 1999). The SRS is an essential document that is used in the next phase of the
SDLC – Systems design.

2.16	 SUMMARY

Identifying system requirements is not a simple process and requires observation and
questioning of a range of stakeholders to ascertain their requirements, some of which may
be contradictory or vary in priority.

Analysts often produce a physical model of an existing system in order to understand its
function and then produce a logical model. This is often followed by a logical model of
the proposed system, which in turn may lead to the development of a physical model
representing the proposed new system.

Process modelling involves producing a number of sets of diagrams. These diagrams include
DFDs which enable the analyst to understand a system from a physical and a logical
perspective. Complex systems require a hierarchy of DFDs; the lower the level, the more
detail is shown. At the lowest level elementary processes are described using decision trees,
decision tables and Structured English. As the DFDs are being produced the data requirements
are also being identified and these are stored within a data dictionary for reference in later
stages of the system’s development life cycle.

At the conclusion of the analysis phase the new system requirements have been identified and
documented. These are then referred to during the next phase of the SDLC – systems design.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

57

Object oriented analysis

57

3	 OBJECT ORIENTED ANALYSIS

On completion of this chapter you should be able to:

•	 understand what is meant by Object Orientation (O-O)
•	 understand key O-O terms
•	 produce common O-O analysis diagrams
•	 understand a Business Process Model (BPM) diagram.

Object oriented analysis modelling provides an alternative to structured analysis modelling.
It views the system as a set of objects and how they interact. Object Oriented Analysis and
Design (OOAD) has become more widespread with the increased use of object-oriented
programming languages such as Java and Python.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

https://subsites.bookboon.com/email/b/2c0817b4-f5c9-4f95-aceb-48efe083e8cb?utm_source=bookadvertisment

SYSTEMS ANALYSIS AND DESIGN

58

Object oriented analysis

The Unified Modelling Language (UML) (Introduction To OMG’s Unified Modeling
Language® (UML®), n.d.) includes a number of diagrams (UML2 has 13) for describing a
system from an object perspective and is widely used for object modelling, so helps improve
communication between analysts and users. This chapter aims to introduce you to the most
popular UML diagrams in their basic form. A full description of the UML is beyond the
scope of this book, however further reading references are provided.

In order to produce an object model, you will need to understand the following O-O terms.

3.1	 OBJECTS AND CLASSES

An object represents a real world item such as a bicycle or a person, and it contains both
data and methods (operations) for processing the object’s data. The object’s data is stored
as a set of attributes and these data values are hidden so as to prevent direct access from
outside; this is called encapsulation.

Objects have different states during their lifetime and these states are altered by events.

Objects belong to a class, which is a group of similar objects. A class consists of a name,
a set of attributes and a set of methods and is represented as shown below. For example,
a racing cycle belongs to the class named bicycle. A class is the specification template for a
set of objects and has attributes and methods. Each object (instance) of the class will have
a particular set of attribute values and any instance of the class will be able to carry out
the class methods in response to the appropriate message.

Class name

Class attributes

Class methods

Fig 3.1 shows an object class

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

59

Object oriented analysis

Example objects (instances) of the PERSON class:-

Barbara De Silva
21/02/86
Female
7 Av. Atlântica
Rio DeJaneiro
Brazil
+55 21 2323232

Mike Smith
12/06/87
Male
6 Long Row
Leeds
United Kingdom
+44 770454545

Ahmet Aslam
12/03/85
Male
At Meydan No:222
Sultan Ahmet
Istanbul
Turkey
+90 202 527 0239

Fig 3.2 Person Objects

Exercise 1

Identify three business classes for a university system. For each class identify three attributes
and two methods (operations).

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

60

Object oriented analysis

60

Exercise 1 feedback

Class Attributes Methods

Student Student name
Student address
Student D.O.B.

Amend address
Enrol on course

Module Module name
Module length
Module level

Add module
Alter module level

Lecturer Lecturer name
Lecturer office
Lecturer telno.

Add lecturer
Amend office

Object classes can be arranged into a hierarchy in which a “sub-class” inherits the characteristics
of the “super-class” The sub-class has all the attributes and methods that the super-class has.
This is called inheritance. The sub-class can have additional attributes and methods and
can be broken down further into more detailed sub-classes.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Designed for high-achieving graduates across all disciplines, London Business School’s Masters
in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to
work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access
to the School’s network of more than 34,000 global alumni – a community that offers support and
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for
top-performing
graduates

* Figures taken from London Business School’s Masters in Management 2010 employment report

http://www.london.edu/mm/

SYSTEMS ANALYSIS AND DESIGN

61

Object oriented analysis

To alter data within an object a message must be sent to the object asking it to perform an
appropriate method. A message “add person” would cause the PERSON class to add a new
instance of PERSON with values for its attributes (providing class PERSON has a method
to add new person). Likewise, a message “Enrol” sent from LECTURER to STUDENT
would enrol the student on a course.

Fig 3.3 Sub-classes and super-classes

In the above example the STUDENT and LECTURER classes are sub-classes of the super-
class PERSON and inherit the attributes and methods of the super-class.

A particular message can be sent to different objects and result in different actions being
taken. For example, the following model shows a class SYMBOL which has sub-classes
SQUARE and CIRCLE. If the message “Draw” is sent to the SQUARE object a square
shape will be drawn; however, if the same message is sent to the CIRCLE object a circle
will be drawn. This ability to interpret messages differently depending on the object is
called polymorphism.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

62

Object oriented analysis

62

Message: Draw

Fig 3.4 Polymorphism

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Started

Go to www.helpmyassignment.co.uk for more info

Get a higher mark
on your course
assignment!
Get feedback & advice from experts in your subject
area. Find out how to improve the quality of your work!

http://www.helpmyassignment.co.uk

SYSTEMS ANALYSIS AND DESIGN

63

Object oriented analysis

Exercise 2

Identify two sub-classes for the STUDENT class shown above in Fig 3.3. For each of the
sub-classes identify two attributes and two methods which would not be in the super-class
student.

Exercise 2 feedback

Sub-class Attributes Methods

Undergraduate student Personal tutor
Student status

Assign personal tutor
Amend status

Postgraduate student Research group
Research supervisor

Add supervisor
Amend research group

Full-time and Part-time students could also be considered for sub-classes of STUDENT.

Object relationship diagrams provide an overview of the system objects and how they
interact, and can provide a useful overview of the system.

STUDENT MODULE LECTURER
Studies Teaches

Fig 3.5 Object relationship diagram

3.2	 USE CASE MODELLING

The UML includes Use Case Modelling which is widely used to show the functionality of
a system from a user’s perspective and provide a useful way of identifying and documenting
the requirements for a system. A use case diagram comprises a number of scenarios. A
scenario describes how a user interacts with the system in certain situations. An external
entity called an actor (a person or other system) interacts or communicates with a use case
which carries out a process or function.

To illustrate how a use case diagram is formed, here is an example from the point of view
of a hotel receptionist. The scenario for booking a hotel room for a guest would be:

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

64

Object oriented analysis

“Ask the guest what type of room they would like and how long they wish to stay. Check
the bookings system to see what rooms are available. Confirm a room and dates with the
guest. Enter the booking details on the system.”

Note how this is written from the point of view of the system user (the receptionist). However,
consider what happens if the receptionist is unable to offer a room of the type requested.

Another scenario can be specified to deal with this situation, for example the guest may be
offered a different grade of room. The “Book Room” use case would consist of the main
success scenario (expected to deal with most cases) and an extension scenario to deal with the
exception. (Note There may be a number of extension scenarios depending on the situation).

Book Room

Main success scenario

1.	 Ask guest what type of room they require
2.	 Check bookings system for room availability
3.	 Confirm room booking with guest
4.	 Update the bookings system.

Extensions (additional scenarios or exceptions)

1a. Room type not available

	 1a1. Identify alternative available room type

	 1a2. Return to step 3 in the main success scenario.

Fig 3.6 A simple use case description

Although a simple description similar to the one above may be suitable for a simple use
case or for a small system, for more complex systems, analysts often produce a more
comprehensive description which includes additional information. The following template
illustrates this for the scenario above.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

65

Object oriented analysis

Use case name Book room.

Scenario Book hotel room for guest.

Trigger Guest requests a room.

Description When a guest requests a room type the receptionist checks the
bookings system to see what rooms are available. If a room of the
type requested is available a booking is confirmed.

Actors Hotel receptionist.

Related use cases Check room availability.

Stakeholders Hotel management.

Pre-conditions Guest requiring a room.

Post-conditions Room booking confirmed.

Main scenario 1.	 Ask guest what type of room they require
2.	 Check bookings system for room availability
3.	 Confirm room booking with guest
4.	 Update the bookings system.

Extensions 1a. Room type not available
	 1a1. Identify alternative available room type
	 1a2. Return to step 3 in the main success scenario.

Fig 3.7 Extended use case description

Note. There are many use case description templates in use. However, they all include the
main information requirements.

A simple use case diagram based on the above scenario is shown below.

 Actor Use case Communication association

System
boundary

Fig 3.8 A simple use case

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

66

Object oriented analysis

66

Use cases can also interact with other use cases. This is the case when one use case includes
the functionality of another use case. It is shown by using the <<include>> relationship.
The following example shows that the use case for checking room availability would be
incorporated into the use case for booking a room.

Fig 3.9 A use case with <<include >> association

Note. The use case symbols are shown enclosed within a box to indicate the boundary
of the system and the lines linking the actors to use cases are called “communication
associations”. Note that some diagrams may include arrow tips pointing in the direction
of the communication. An <<extend>> relationship can also be used to show the optional
use of a use case, for example a use case “Make payment” might be extended to include a
use case for “Credit card payment” and an alternative use case for “Cash payment”.

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/icoast

SYSTEMS ANALYSIS AND DESIGN

67

Object oriented analysis

Use cases should include all related transactions, so in the case of a guest booking into a
hotel the associated transactions include room booking, issuing the bill and bill payment.
This situation is shown by the use case diagram below.

Fig 3.10 Hotel booking use case diagram

Exercise 3

Produce a use case description for the following scenario:-

“The hotel housekeeping manager checks the toiletries stock file on a weekly basis to ensure
that there are sufficient quantities of soaps, shampoos etc. available. Where necessary, an
order is raised to be sent to the supplier. Copies of the orders are kept and used to check
the supplier delivery notes and invoices when they are received. Occasionally the suppliers
are unable to send the requested toiletries and will suggest alternatives. Once the toiletries
have been supplied the stock file is updated.”

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

68

Object oriented analysis

68

Exercise 3 feedback

Main success scenario

1.	 Check stock file weekly
2.	 If stock quantity < reorder level, raise supplier order
3.	 File order copy
4.	Check order against delivery note/invoice
5.	 Update stock file with supplies.

Extensions

2a Supplier not able to supply toiletries

	 2a1 Choose alternative toiletries

	 2a2 Return to step 3 in the main success scenario.

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/ChalmersINTL2016

SYSTEMS ANALYSIS AND DESIGN

69

Object oriented analysis

3.3	 CLASS DIAGRAM

When the analyst has identified the object classes from the use case diagrams, a logical
model in the form of a class diagram is produced to show the associations between
them. A class association is used to represent the relationship between two classes. It has
a descriptive label and shows multiplicity. Multiplicity describes how many instances of
one class in the relationship relates to instances of the other class. This is also sometimes
referred to as cardinality.

The multiplicity of a relationship indicates the minimum and maximum number of occurrences
and is shown using the following symbols:-

0..1	 is read as 	 zero or one

1..1	 is read as	 one and only one

0.. *	 is read as	 zero one or many

1.. *	 is read as	 one or many

In the following class diagram the binary relationship between MODULE and LECTURER
would be read from right to left as one LECTURER delivers one or many MODULEs
(1..*) and read left to right, one module is delivered by zero or one lecturer (0..1). The
implication here could be either that a module may not yet have a lecturer assigned to
deliver it, or that it is a self-study module.

Now let us consider the many-to-many relationship between STUDENT and MODULE.
As a student can study one or many modules (1..*) and a module may be studied by zero,
one or many students (0..*) there will be a need to store additional data generated by this
relationship – the assessment mark and grade for each student taking a module. Whilst you
may consider storing this information in either of the classes, this would not be a practical
solution due to the potentially large number of items of data, so the data is held in a
new association class named STUDIES, which is shown linked to the initial relationship
with a dashed line. This approach resolves the many-to-many relationship in an effective
implementation that can cope with any number of students taking any number of modules.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

70

Object oriented analysis

Fig 3.11 Example Class diagram

Note. It is important to consider each relationship from both directions to ensure you specify
the correct multiplicity when drawing a class diagram.

3.4	 SEQUENCE DIAGRAMS

The sequence diagram is used to show the interactions between objects in the sequence that
they occur. They can prove useful in showing the dynamics of how a use case works and
can be used to document the requirements for the new system. They are produced using
the information acquired from the use case diagrams and scenario descriptions. Sequence
diagrams can be drawn in varying degrees of detail depending on where they are being used
within the SDLC. The basic elements are shown in the diagram below.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

71

Object oriented analysis

71

The following shows a sequence diagram for the Exercise 3 Toiletries stock check:-

Fig 3.12 Simple sequence diagram for stock ordering

The sequence diagram is made up of four main components:- classes, lifelines, messages
and activation boxes.

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/elearningforkids

SYSTEMS ANALYSIS AND DESIGN

72

Object oriented analysis

The classes HOUSEKEEPING MANAGER, STOCK ITEM, SUPPLIER ORDER and
SUPPLIER are represented by rectangles.

The classes have lifelines which are represented by the vertical dashed lines. The lifeline
indicates the time period that its class object is communicating with the other objects.

The messages are shown as horizontal arrowed lines pointing in the direction the message
is travelling, and include a label indicating the name of the message. The first message is
usually shown at the top with subsequent messages being arranged below one another.
When messages are sent to an object this triggers a method (operation) within that object.
Sequence numbers can be added to the messages, though this is not usually necessary as
the vertical order of messages indicates the sequence.

The activation boxes are shown as a vertical bar (in blue) over the lifeline and this indicates
the period of time when an object is carrying out an operation often referred to as the focus
of control. A large X is sometimes shown at the bottom of an activation box to indicate
the destruction of an object at the end of its lifeline.

Note. Complex interactions may require more than one sequence diagram to fully represent
the main and alternative scenarios.

Sequence diagrams are useful when you have a complex scenario to work through.

3.5	 STATE MACHINE DIAGRAMS

As has already been shown, objects have behaviours and states. In order to understand the
various states an object goes through during its existence a state machine diagram, sometimes
referred to as a state transition diagram, can be drawn. This diagram shows the transitions
between the states that an object may undergo, caused by internal or external events. State
machine diagrams tend to be created when examining a class with a complex life cycle.

The state machine diagram shown below represents a university student and the various stages
or states that they transition. The round-edged rectangles represent the states:- initially the
student will be regarded as an applicant, then they will be enrolled, when they arrive they
will be registered and normally they will complete their course. Whilst at the university
they may be withdrawn either temporarily or permanently. The small solid circle is the
initial state, i.e. when the object starts its interaction with the system. The arrows indicate
the event that triggers the transition from one state to another. The solid circle with the
border represents the object’s final state.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

73

Object oriented analysis

Fig 3.13 A state machine diagram for a university student.

3.6	 ACTIVITY DIAGRAMS

An activity diagram is used to show actions and events in the order they take place, along
with their outcomes. The following activity diagram is based on the scenario described in
Exercise 3 above. The solid circle represents the start state of the diagram. The rounded
rectangle represents an activity (manual or automated), the arrow represents an event
(something that happens at a time and place) and the diamond represents a decision or
branch, the condition value can be shown and is referred to as a guard condition. Additional
symbols that can be used are a flat rectangle bar which represents a synchronisation, a fork
which allows activities to take place in parallel and a join which brings events together. The
final state (end of diagram) is shown by a solid circle with a border.

Fig 3.14 An activity diagram for hotel stock ordering

Activity diagrams can be partitioned using pairs of lines referred to as “swimlanes” to
show the activities which are performed by the different roles participating in the process.
A role can be a user type – e.g. manager – or a platform – e.g. a web server. In the above
scenario all the activities are carried out by the hotel housekeeping manager so swimlanes
have not been included.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

74

Object oriented analysis

74

To create an activity diagram, consider the order in which activities take place and consider
any conditions that may arise so that all the scenarios for the use case have been considered.
If you have produced a physical DFD this may help to identify the order of activities.

3.7	 BUSINESS PROCESS MODELLING

One final graphical modelling technique that can be used to represent how systems work,
showing the business processes, events and people involved, is the standard business process
model and notation (BPMN) (Object Management Group Business Process Model and
Notation, 2014). The BPMN can be used to model requirements and can also be used in
later stages of the development cycle. Its purpose is to provide a standard notation which can
be understood by analysts, developers and other business stakeholders. A diagram consists of
events, activities (tasks), sequence flows and gateways, which control the direction of flows.

Download free eBooks at bookboon.com Click on the ad to read more

© Agilent Technologies, Inc. 2012 u.s. 1-800-829-4444 canada: 1-877-894-4414

Teach with the Best.
Learn with the Best.
Agilent offers a wide variety of
affordable, industry-leading
electronic test equipment as well
as knowledge-rich, on-line resources
—for professors and students.
We have 100’s of comprehensive
web-based teaching tools,
lab experiments, application
notes, brochures, DVDs/
CDs, posters, and more. See what Agilent can do for you.

www.agilent.com/find/EDUstudents
www.agilent.com/find/EDUeducators

http://www.agilent.com/find/EDUeducators

SYSTEMS ANALYSIS AND DESIGN

75

Object oriented analysis

The following simple business process diagram shows the hotel room booking processes
mentioned in section 3.2 above.

H
ot

el
 R

ec
ep

tio
n

H

ot
el

 R
ec

ep
tio

ni
st

La

ne
 n

am
e

Fig 3.15 Simple business process diagram for room booking

“Request room” is the starting event. The first activity task “Check room type available” is
carried out, followed by an exclusive gateway (diamond) which represents the “Room type”
check to ascertain whether it is available; if not, another task “Find alternative room” is
undertaken. This is followed by an inclusive gateway (diamond with a circle) which routes
the sequence flow to the task “Book room”.

The business process diagram can be partitioned to show which tasks are undertaken by
different participants, although in this example all the tasks are undertaken by the hotel
receptionist. A diagram typically consists of a pool (like a swimming pool, shown as a
large rectangle positioned horizontally or vertically) which is partitioned into a number of
lanes. Each lane shows a sub-partition of a process which is carried out by a participant.
The above example only utilises one lane as the whole process is carried out by just one
participant – the hotel receptionist. If further participants are involved these would appear
in different swim lanes and the flows and symbols would be inserted in the relevant swim
lane with flows linking across the swim lanes when necessary.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

76

Object oriented analysis

Detailed diagrams can be drawn utilising the full set of symbols which include messages,
timers, signals and further gateway types. For the full specification see http://www.omg.org/
spec/BPMN/2.0.2/ (Object Management Group Business Process Model and Notation, 2014)

3.8	 SUMMARY

The analyst can use the UML to analyse the system requirements from an object-oriented
perspective. This involves producing a set of diagrams to reflect the user’s needs and specify
the system’s requirements. These include use case diagrams, class diagrams, sequence diagrams,
state machine diagrams and activity diagrams. These should be reviewed with the business
users until all are satisfied that they accurately reflect the requirements. The UML models
will in effect provide a detailed set of specifications to be used later in the systems design
phase of the SDLC. The O-O approach to modelling aims to utilise the reusability of objects
and also aids maintainability of systems.

Further reading:

(Agile Models Distilled: Potential Artifacts for Agile Modeling, n.d.)

Download free eBooks at bookboon.com

http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/

SYSTEMS ANALYSIS AND DESIGN

77

Systems design

77

4	 SYSTEMS DESIGN

On completion of this chapter you should be able to:

•	 produce an efficient data design
•	 design an effective user interface
•	 describe system architectures.

Following the completion of the systems analysis phase of the traditional SDLC, the system
development phase can begin. However, at this point a decision may be made to consider
available options for acquiring the system. Typical options include outsourcing, in which
an outside organisation (a service provider) provides the system (as an application) and in
some cases operates and maintains it (as an application service provider). If considering
outsourcing an organisation needs to take account of issues such as security, levels of risk
and cost – not just initial development costs but also the total cost of ownership (TCO)
which includes the lifetime costs of the system. Outsourcing may be used just for the system
development, as this may save the organisation the cost of acquiring additional staff who
may not be needed on completion of the development.

Download free eBooks at bookboon.com Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

SYSTEMS ANALYSIS AND DESIGN

78

Systems design

Sometimes it may be necessary to decide whether to purchase a commercial package if
one exists that meets or can be customised to meet the systems requirements, or whether
to develop the system within the organisation, though this approach may still include
outsourcing some of the development work. Typical reasons for in-house development are
that the system produced would fully meet the requirements and allow for control of any
technical or existing system constraints. Developing in-house may also offer greater security
by avoiding the risk of the provider ceasing to offer support in the future. Reasons for
purchasing an existing product usually relate to lower costs (mainly development), although
the TCO may prove to be higher. Choosing an existing product with supplier updates that
has a proven history may offer a more reliable and quicker implementation. The analyst
will be involved in considering these acquisition options and needs to be able to evaluate
the advantages and disadvantages in order to make a recommendation to the management
in order to inform the final decision.

In traditional development environments the requirements specification is handed over to
the software developers who will convert the logical models into a physical design. Physical
design involves producing specifications that describe the data structures and the data
validation rules, the business processes and the input and output formats for the system
interface (i.e. screen forms and reports). When the design and development is completed the
system is handed over to the users. This structured approach poses a risk that the delivered
system may not satisfy the users even though it meets the agreed functional requirements.
The alternative Agile development approach involves the users throughout the development
phase by gaining their feedback on the design and development of small work packages
at regular intervals. This approach aims to meet the needs of the users more closely and
minimise any costly redevelopment changes.

4.1	 DATA DESIGN

During the analysis phase the data requirements were identified, these requirements need
to be structured in an efficient form so as to ensure data integrity and easy maintenance.
Traditional legacy systems relied on separate data files, often resulting in duplicated data
which caused update problems when an occurrence of a data value was changed in one
file location but not the others. Most current information systems use a database for data
storage as this allows data structures to be added or altered without needing to modify the
systems using the data. Relational database management systems (RDBMS) allow an
organisation to maintain all of its enterprise-wide data in an efficient form that provides
flexible and secure data access. Note that some smaller systems may just make use of a
local database system, but these are designed in the same way. Databases may be accessed
remotely via the Internet or internally via a local area network (LAN).

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

79

Systems design

Data within a database is accessed and maintained using a data manipulation language
(DML) An example of this is the widely used structured query language (SQL). Query
by example graphical front end tools which allow users easier access to the data they require
are also available with some databases. The data within a database is stored in tables which
consist of rows representing data records, e.g. a student record. Each row comprises a specified
number of columns (often called fields) for storing individual data values, e.g. student name,
address, telephone number etc. Each column has a defined data type. Each row is identified
by a primary key (PK); this makes it possible to retrieve an individual row (record) from
within the table. A primary key is a unique value which is contained within one column,
although in some cases a compound key may be formed by using more than one column.

The tables are structured in a simple form to eliminate data duplication resulting in data
being stored across a number of tables within the database. In order to extract the required
related data to satisfy an information requirement, tables need to be linked. This is achieved
by including a foreign key (FK) column in a table which holds a value that matches a
primary key column value in the relevant table. To illustrate this, consider a university
scenario where you have the database tables STUDENT, COURSE and TUTOR. In order
to identify the course a student is studying, the two tables STUDENT and COURSE need
to be linked. This is achieved by including a foreign key column called Course_Id in the
STUDENT table. Likewise, in order to identify a student’s personal tutor, the personal
tutor’s id is stored as a foreign key within the STUDENT table, which provides a link to
the TUTOR table primary key column Tutor_Id as shown below:

Table: STUDENT

Student_Id (PK) Student_name Course_Id (FK) Personal_Tutor (FK)
S10102 M Jones C101 L1111
S10103 L Shaw C101 L1111
S10104 A Khan C107 L1203

Table: COURSE

Course_Id (PK) Course_name Level
C101 BSc. Computing UG
C102 BSc. Information Systems UG
C107 MSc. Software Engineering PG

Table: TUTOR

Tutor_Id (PK) Tutor_name Tutor_tel_no.
L1111 Dr Dixon 778907
L1202 Dr Jones 779967
L1203 Dr Berger 775565

Fig 4.1 Tables with primary and foreign keys

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

80

Systems design

80

The database system maintains referential integrity automatically; this means that it will
ensure that foreign key values match with an existing primary key value in the referenced
table. Likewise, duplicate primary key values in a table are prevented.

4.2	 ENTITY MODELLING

In order to design the physical database table structures needed for the system, further analysis
of the data requirements as identified from the systems analysis phase must be undertaken.
This is achieved by using Entity modelling which is a top-down approach that involves
producing an entity relationship diagram (ERD) showing the data “entities” and their
“relationships”. A data entity is formally called an “entity type” which represents a data
object relevant to the system and can be defined as follows:

‘A group of objects with the same properties which are identified by the enterprise as having
an independent existence” (Connolly, 2015, p. 406)

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/gautrain

SYSTEMS ANALYSIS AND DESIGN

81

Systems design

An ERD uses the following symbol to represent an entity. Each entity is given a name
which is always shown in the singular and in upper case text e.g.

Fig 4.2 Entity type

Entity types are linked by means of “relationships”. The relationships are shown as lines
with descriptive labels, linking the entity types on the ERD. The relationship lines include
additional symbols which represent the “cardinality”. Cardinality defines the number of
occurrences of an entity type as it relates to one occurrence of the other entity type in the
relationship. The cardinality symbols used give rise to the notation name “crow’s foot” as
the “many” symbol looks like a crow’s foot.

There are three main types of relationship:-

One to one relationship (Abbreviated as 1:1)

Fig 4.3 A one to one relationship

In a one to one relationship, one occurrence of an entity type only relates to one occurrence
of the other entity type. The above example represents the situation in which a lecturer acts
as a course leader for one course and a course only has one course leader (lecturer). This
would be read as “a lecturer leads one and only one course and a course is led by one and
only one lecturer”.

One to many relationship (Abbreviated as 1:M)

Fig 4.4 A one to many relationship

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

82

Systems design

A one to many relationship is where one occurrence of an entity type relates to at least
one and possibly many occurrences of the other entity type, as in the above example where
one tutor may supervise one or more students. The two vertical lines against the TUTOR
entity type indicate that an occurrence of the TUTOR entity type is mandatory, i.e. must be
present in the relationship. The vertical line and crow’s foot symbol against the STUDENT
entity type indicates that at least one, but possibly many, occurrences of the STUDENT
entity type can be present. The above relationship would be read as “a tutor supervises one
or many students and a student is supervised by one and only one tutor”.

Many to many relationship (Abbreviated as M:M or M:N)

Fig 4.5 A many to many relationship

In a many to many relationship, an occurrence of one entity type will relate to one or
many occurrences of the other entity type and vice a versa. The above example would be
read as “a student studies one or many modules and a module is studied by one or many
students”. Note the abbreviation M:N is often used as this indicates that the number of
occurrences at one end of the relationship may be different from the number of occurrences
at the other end of the relationship.

In some relationships an occurrence of an entity type may not always be present. In this
situation the relationship is said to be “optional”. To illustrate this, consider the relationship
shown in Fig 4.4 above. This shows that a tutor supervises at least one student, however
what if some tutors do not supervise students? This optionality can be shown on the
relationship, denoted by a small circle on the relationship line against the entity type that
is optionally present:-

Fig 4.6 An optional one to many relationship

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

83

Systems design

83

The relationship now reads as “a tutor supervises zero, one or many students and a student
is supervised by one and only one tutor”. The zero implies optionality. Optionality may be
present at both ends of a relationship. For example, using Fig 4.5 above, if a student can
exist who has not studied any modules, a circle could be placed against the module entity
type, and if a module may not be studied by any students i.e. it is a new module which is
not yet being taught, this can be represented as follows:-

Fig 4.7 A many to many relationship with optionality

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/Item24

SYSTEMS ANALYSIS AND DESIGN

84

Systems design

Referring to Fig 4.3 above, if you needed to show that not all lecturers lead courses then
optionality would be shown against the course entity type as shown below. This would be
read as “a lecturer leads zero or one course and a course is led by one and only one lecturer”:-

Fig 4.8 A one to one relationship with optionality

Note. It is important to read a relationship in both directions to ensure that the correct
cardinality and optionality are specified, as mistakes will affect the subsequent table
implementation. You can think of the inner relationship symbol (| or O) as the minimum
number (one or zero) of occurrences and the outer symbol (| or <) as the maximum number
of occurrences (one or many).

The many to many relationship type differs from the other types in that the relationship
itself holds data which cannot be stored effectively in either of the participating entity
types. Let us consider the M:N relationship shown in Fig 4.7 above. A student may study
many modules and a module may be studied by many students. This implies the need to
be able to identify which modules a particular student is studying and also which students
are studying a particular module. It would not be practical to store each module studied
by a student in the student entity; likewise, it would not be practical to store every student
studying a module in the module entity. This situation is resolved by replacing the M:N
relationship with a new entity type referred to as an “associative entity” (often called a
link entity) which is linked with 1:M relationships to the other two entity types.

An occurrence of the STUDY MODULE associative entity type would include two columns,
one to hold the primary key value of a student (Student_Id) and the other would hold the
primary key value of the module (Module_Id). Note that these two values act as foreign
keys within the associative entity type and when used together form a compound primary
key. This approach allows for any number of students studying any number of modules to
be recorded easily. This altered relationship is shown as follows:-

Fig 4.9 An associative entity

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

85

Systems design

The above entity relationships can now be combined to form a complete entity
relationship diagram:-

Fig 4.10 University ERD

More complex relationships can be modelled using extended modelling techniques. These
are not covered in this text; readers are encouraged to refer to the author’s book Database
Design and Implementation (Gould, 2015) for a more detailed explanation of modelling
and database design.

A set of “relations” can be derived from the ERD with reference to system data identified
during the analysis phase. A relation, not to be confused with a relationship, is a logical
representation of an entity type and consists of its “attributes”. The relations are similar
to physical data tables and the attributes are similar to table column values. A relation can
be represented as follows:-

Relation name (attribute1, attribute 2, etc.)

e.g. STUDENT (Student_id, student_name, student_DOB, Tutor_id )

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

86

Systems design

86

Note. The Student_id is shown in bold and underlined to signify that it is a unique identifier
(primary key), foreign key attributes, if present, are shown in italics.

Initially, when deriving relations not all attributes may be known so ‘skeleton relations’
are produced which only include the primary and foreign key attributes.

4.3	 NORMALISATION

Producing relations involves identifying all the data attributes that relate to a specific entity
type, including any foreign key values which can be identified by considering the entity
relationships. When the relations have been produced a set of rules is applied to each one
to ensure that they are in a form that avoids data redundancy and results in efficient table
structures. This process is called “normalisation” and is often referred to as a bottom-up
design approach, as it focusses on grouping the data attributes together to form appropriate
relations. Data source documents (forms/reports) may also be normalised directly in order
to identify their relations, some of which may not be present on the ERD but need to be
included. Following this process, the table design can be finalised.

Download free eBooks at bookboon.com Click on the ad to read more

The Stockholm School of Economics is a
place where talents flourish and grow. As one
of Europe’s top business schools we help you
reach your fullest potential through a first
class, internationally competitive education.

SSE RANKINGS IN FINANCIAL TIMES

No. 1 of all Nordic Business Schools (2013)
No. 13 of all Master in Finance Programs
Worldwide (2014)

The journey starts here
 Earn a Masters degree at the Stockholm School of Economics

Stockholm School of Economics

SSE OFFERS SIX DIFFERENT MASTER PROGRAMS!

APPLY HERE

http://s.bookboon.com/hhs

SYSTEMS ANALYSIS AND DESIGN

87

Systems design

At the logical design stage the relations may be in one of the following states:-

-- Un-normalised (UNF),
-- 1st Normal Form (1NF),
-- 2nd Normal Form (2NF),
-- 3rd Normal Form (3NF).

By applying the rules, a relation is transformed until it is in 3rd normal form, which is
commonly referred to as “normalised”.

An un-normalised relation contains a repeating group of attributes. Any repeating group
needs to be separated from the original relation and placed into a new relation with its
own primary key. The identifying attribute for the new relation remains in the original
relation to act as a foreign key to provide a link to the new relation. This process can be
illustrated as follows:

The following example shows an un-normalised table called STUDENT:

Student

Id

Student

Name

Module

Id

Module name Module

Grade

Course

Id

Course

name

101 J Smith DB Databases 75 CMP Computing

101 J Smith SA Systems
Analysis

65 CMP Computing

101 J Smith PR Programming 70 CMP Computing

102 A Khan DB Databases 55 CMP Computing

102 A Khan PR Programming 60 CMP Computing

103 R Berger DB Databases 50 BIT Business IT

103 R Berger WD Web
Development

55 BIT Business IT

Fig 4.11 Un-normalised table

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

88

Systems design

The attributes Module Id, Module name and Grade are repeated for each student, so to
transform the STUDENT table into 1NF these repeating attributes are removed and placed
into a new table called MODULE GRADE. The primary key for the new table will be a
compound key consisting of the Module Id and the student Id (also a foreign key). This
results in the following 1NF tables:-

STUDENT

Student Id (PK) Student Name Course Id Course name

101 J Smith CMP Computing

102 A Khan CMP Computing

103 R Berger BIT Business IT

MODULE GRADE

Student
Id (FK)

Module
Id

Module name Module
Grade

101 DB Databases 75
101 SA Systems Analysis 65
101 PR Programming 70
102 DB Databases 55
102 PR Programming 60
103 DB Databases 50
103 WD Web Development 55

Compound Primary key

Fig 4.12 1NF tables

To transform 1NF tables into 2NF involves checking for part-key dependencies and removing
these to form a new table. To explain what a part key dependency is, let us look at the
1NF MODULE GRADE table in Fig 4.12.

This table has a multi-part key consisting of the Student Id and the Module Id. A check
is made to identify if any other columns are dependent on only one part of the key (i.e.
determined by a part of the key). On inspection, it becomes apparent that the Module
name can be determined by just the Module Id, so there is a part key dependency. This
results in the Module Id and Module name being used to form a new 2NF table called
MODULE. Contrast this with the module grade column; this can only be determined by
having both the Student Id and the Module Id, so is dependent on the full key and remains
in the MODULE GRADE table.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

89

Systems design

89

As the MODULE table only has a single column key – Module Id – the table is, by default,
already in 2NF. The 2NF tables are as follows:-

STUDENT

Student
Id (PK)

Student
Name

Course
Id

Course name

101 J Smith CMP Computing
102 A Khan CMP Computing
103 R Berger BIT Business IT

MODULE GRADE

Student
Id

Module
Id

Module
Grade

101 DB 75
101 SA 65
101 PR 70
102 DB 55
102 PR 60
103 DB 50
103 WD 55

MODULE

Module Id
(PK)

Module name

DB Databases
SA Systems Analysis
PR Programming
WD Web Development

Fig 4.13 2NF tables

Download free eBooks at bookboon.com Click on the ad to read more

http://www.ikea.se/student

SYSTEMS ANALYSIS AND DESIGN

90

Systems design

The final step is to ensure that the tables are in 3NF. This is to ensure that all non-key
attributes are dependent on the key and only the key. To illustrate this, let us look at the
2NF STUDENT table from Fig 4.13 above.

The Student name and Course Id are determined by the key Student Id, however the Course
name can be determined by the non-key attribute Course Id, so the course name can be
placed in a separate table called COURSE, along with the Course Id which will be the
table primary key. The other 2NF tables are already in 3NF so they remain unchanged.
This results in the following normalised set of tables:

STUDENT

Student
Id (PK)

Student
Name

Course Id
(FK)

101 J Smith CMP
102 A Khan CMP
103 R Berger BIT

MODULE GRADE

Student
Id

Module
Id (FK)

Module
Grade

101 DB 75
101 SA 65
101 PR 70
102 DB 55
102 PR 60
103 DB 50
103 WD 55

MODULE

Module Id (PK) Module name
DB Databases
SA Systems Analysis
PR Programming
WD Web Development

COURSE

Course Id (PK) Course name
CMP Computing
CMP Computing
BIT Business IT

Fig 4.14 3NF tables

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

91

Systems design

Note. In some situations, a decision may be made to denormalise the tables for performance
reasons but this should be avoided if at all possible.

See Appendix B Normalisation template which will assist you with the normalisation
process.

Remember attributes in a relation should depend on:

1NF – the key

2NF – the whole key

3NF – nothing but the key

The set of tables from Fig 4.14 can be represented by the following ERD:-

Fig 4.15 Student ERD

4.4	 IDENTIFYING RELATIONS

The rules for deriving the relations and their keys from an ERD are summarised as follows:

For a 1:M relationship the Primary Key from the ‘one’ end of the relationship is included
at the ‘many’ end of the relationship as a foreign key, e.g. the primary key Course_id of
COURSE is stored in STUDENT as a foreign key. Optionality at the ‘many’ end does not
affect this rule but optionality at the ‘one’ end does.

If there is optionality at the ‘one’ end of the 1:M relationship, a new relation is needed,
as this avoids a NULL (empty) foreign key value being stored at the ‘many’ end of the
relationship. Note. NULL keys are to be avoided as they would not identify any row within
the database table.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

92

Systems design

92

The new relation will hold the primary key from the ‘many’ end of the relationship as the
foreign and primary key in the new relation, which will also contain the primary key from
the ‘one’ end of the relationship as a foreign key. This is shown as follows:-

TUTOR(Tutor_Id) STUDENT(Student_Id) TUTEE(Student_Id, Tutor_Id)

Fig 4.16 1:M relationship with optionality

For a 1:1 relationship the primary key from either end of the relationship may be deposited
as a foreign key at the opposite end of the relationship. Note. Often a 1:1 relationship
without optionality gives rise to a single table containing all the attributes from each entity
with either key being used as the primary key.

If the 1:1 relationship includes optionality at just one end of the relationship, the
primary key from the non-optional end is inserted as the foreign key at the optional end
of the relationship.

Download free eBooks at bookboon.com Click on the ad to read more

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

http://s.bookboon.com/ericsson

SYSTEMS ANALYSIS AND DESIGN

93

Systems design

If the 1:1 relationship includes optionality at both ends, a new relation is needed to avoid
NULL foreign keys. The new relation contains both the primary keys as foreign keys, and
either of the foreign keys can be used as the primary key in the new relation.

For a M:N relationship a new relation is created which contains the primary keys from
each of the original relations as foreign keys; both together are used to form a compound
primary key.

Exercise 1

Produce a set of relations in third normal form (3NF) for the following Invoice document
(Gould, 2015, p. 70), Use the Appendix B normalisation template:-

Yorkshire Computer Supplies

1 Long Road, Leeds, LS3 3QS, West Yorkshire, UK. Tel: 0113 2832700

INVOICE

Invoice No: 1034 Invoice Name / Address

Invoice Date: 31/1/2015 H. Jones

Customer No: C101 9 The Avenue

 Harrogate

 HG2 7LR

ITEM ID DESCRIPTION QTY PRICE AMOUNT
PC1 Computer 3 500.00 1500.00

MN2 Monitor 3 200.00 600.00

LP1 Printer 1 156.00 156.00

 SUBTOTAL 2256.00

TAX @ 20% 451.20

DELIVERY 35.00

TOTAL 2742.20

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

94

Systems design

Exercise 1 feedback

UNF 1NF 2NF 3NF Relation /
Table Name

1. List all the
attributes below
from a single
document / table.
2. Identify the
unique identifier /
primary key. Show
in bold or colour.
May need an
artificial key.
3. Identify any
repeating attribute
group(s). Show
between (….) or use
colour.

1. Place repeated
attribute group(s) if
any in a new
relation.
2. Include the UNF
unique identifier as a
foreign key in the
new relation.
3. Identify the
additional
attribute(s) in the
new relation to form
a compound key
with the foreign key.

1. Remove any part
key dependent
attributes to a new
relation.
2. Identify identifier
for each new
relation.
3. Include foreign
key in the original
relation.

1. Remove any non-
key dependent
attributes to a new
relation(s).
2. Identify the
unique identifier for
the new relation(s).
3. Include a foreign
key in the original
relation.

Assign a
suitable name
for each
relation/table.

Inv_no Inv_no Inv_no Inv_no INVOICE

CUSTOMER

INVOICE
ITEM

ITEM

Inv_date Inv_date Inv_date Inv_date
Inv_customer_no Inv_customer_no Inv_customer_no Inv_customer_no
Inv_name_address Inv_name_address Inv_name_address Inv_sub_total
Inv_item_id Inv_sub_total Inv_sub_total Inv_tax
Inv_item_desc Inv_tax Inv_tax Inv_delivery
Inv_item_qty Inv_delivery Inv_delivery Inv_total
Inv_item_price Inv_total Inv_total
Inv_item_amount Inv_customer_no
Inv_sub_total Inv_no Inv_no Inv_name_address
Inv_tax Inv_item_id Inv_item_id
Inv_delivery Inv_item_desc Inv_item_qty Inv_no
Inv_total Inv_item_qty Inv_item_amount Inv_item_id
 Inv_item_price Inv_item_qty
 Inv_item_amount Inv_item_id Inv_item_amount
 Inv_item_desc
 Inv_item_price Inv_item_id
 Inv_item_desc
 Inv_item_price

Note the Primary keys are shown in bold and the foreign keys are in italics. INVOICE_ITEM
has a compound primary key

INVOICE (Inv_no, Inv_date, Inv_customer_no, Inv_sub_total, Inv_tax, Inv_delivery, Inv_total)

CUSTOMER (Inv_customer_no, Inv_name_address)

INVOICE_ITEM (Inv_no, Inv_item_id, Inv_item_qty, Inv_item_amount)

ITEM (Inv_item_id, Inv_item_desc, Inv_item_price)

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

95

Systems design

95

4.5	 DATA TABLE STRUCTURES

Once a set of relations has been derived, the final stage of data design involves specifying
the physical table structures. This includes defining the columns and their data types and
sizes. At this point the analyst may choose to use codes to identify some data values, e.g.
student_id – S123456, course_code – CMP etc. Using codes – which usually consist of
letters and/or numbers – appropriately can minimise data entry time, reduce data entry
mistakes and save storage space. Where numeric-only codes are used to uniquely identify
data records these are usually automatically generated by the system to avoid duplicates
being entered in error.

Typical available data types include the following:-

Number – used to hold values which are used in calculations, e.g. hourly pay rate, are
normally defined as integers if only whole numbers need to be stored, e.g. 121, or real
numbers if decimal places are needed e.g. 5.25.

Download free eBooks at bookboon.com Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

SYSTEMS ANALYSIS AND DESIGN

96

Systems design

Character – used to store character strings of a fixed length which can be made up of
letters, digits or other symbols commonly found on a computer keyboard. Note. Columns
that do not contain the maximum number of characters specified will normally be padded
out with spaces. Fixed size codes such as student id or items such as telephone numbers
are usually defined as character data types.

Variable length character – used to store variable length character strings, these allow for
larger strings to be stored but if a string that is less than the maximum specified length is
entered, the data value is not padded with spaces and the system shrinks the column in
order to save storage space.

Date – the date datatype is used when actual dates need to be stored. They are encoded so
that they can be used in date checking arithmetic, whereas dates stored within a character
field may look like dates when displayed, but are not stored as true dates therefore they
cannot be recognised as such in date checking validation or calculations.

Note. The specific data types available and their storage formats will depend on the database
management system specified for implementation.

Care should be taken when specifying data types and sizes to ensure that they will hold the
maximum required numerical values, character string lengths or date formats.

Similar data type principles also apply to conventional data files that may be used
in some systems.

The following shows the ORACLE Structured Query Language (SQL) table structure
definitions for the student ERD example shown in Fig 4.15 above:-

CREATE TABLE course (
Course_Id		 char(3) Primary key,
Course_name		 varchar(30));

CREATE TABLE student (
Student_Id 		 char(3) Primary Key,
Student_name		 varchar2(30),
Course_Id		 char(3) references Course (Course_Id));

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

97

Systems design

CREATE TABLE module (
Module_Id		 char(2) Primary Key,
Module_name		 varchar2(30));

CREATE TABLE module_grade (
Student_Id		 char(3),
Module_Id		 char(2) references module (Module_Id),
Module_Grade	 Integer,
Primary key (Student_Id, Module_Id));

The ‘char ‘datatype defines a fixed length character string and the value in () represents the
maximum number of characters that can be stored.

Varchar2 data type defines a variable length character string and the value in () represents
the maximum number of characters that can be stored.

Integer data type defines a column that can hold a value in the range -2147483648 to
2147483647.

SQL can be used to extract and manipulate data from within the database tables. The
following is an example for the query “which students are studying the Databases module”:-

SELECT Student_name
FROM student, module_grade, module
WHERE student.Student_Id = module_grade.Student_Id
	 AND module_grade.Module_Id = module.Module_Id
		 AND module.module_name = ‘Databases’;

Note that the data types and sizes are not specified within the SQL SELECT statement to
extract the data, as the database maintains the stored table definitions.

Finally, data access and security need to be considered to ensure that users of the system are
only granted access to data they are permitted to use. This is usually enabled by means of a
system user access ID and password. Often, stored data is encrypted to prevent unauthorised
access and audit logs may be kept to record information about a user’s data access. The
database administrator will be responsible for setting access rights and ensuring that the
database is backed up regularly to ensure that in the event of a serious problem, previously
backed up data can be retrieved and reinstated.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

98

Systems design

98

4.6	 HUMAN-COMPUTER INTERACTION

Once the data requirements for the system have been identified, attention can be given to
designing the user interface which will be passed to the system developers later. The user
interface provides a means of communication between the system and the user and this is
referred to as human-computer interaction (HCI). It is vitally important to ensure usability –
designing an effective user interface (UI) which allows the users to feel comfortable and
to ensure they are as productive as possible when using the system.

A significant amount of research has been undertaken to identify good principles of UI
design. One such example is “The Eight Golden Rules of Interface Design.”

http://www.cs.umd.edu/~ben/goldenrules.html (Shneiderman B., 2010).

Most systems interact with users by means of a computer screen, keyboard and mouse
utilising a graphical user interface (GUI) but some allow for voice or touch input and
speech output. Other specialised devices may be used for speedier data entry such as barcode
scanners or radio-frequency identification (RFID) tag readers.

Download free eBooks at bookboon.com Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.cs.umd.edu/~ben/goldenrules.html
http://www.employerforlife.com

SYSTEMS ANALYSIS AND DESIGN

99

Systems design

It is important to gain early feedback on the UI design from users, and in order to facilitate
this storyboards may be constructed; these are sketches which show the basic screen
layouts. Software prototypes may also be constructed which simulate the actual screens. A
UI may undergo a number of changes following prototype feedback and further changes
may be made after the system goes live, as in some cases an interface may be assessed for
performance by monitoring actual user usage and collecting usability metrics. Ultimately
it is the system users who decide if the interface satisfies their needs.

The aim should be to produce a self-explanatory interface that is quick and easy to use, as
most users do not like reading user guides or manuals.

The following should be considered when designing the interface:-

-- All screens should be easily accessible, usually by means of a system main menu
consisting of control buttons, menu bar tabs or navigation tree lists which, when
selected, will take the user to a sub-menu or directly to a particular function screen.

The following storyboard example shows a simple main menu screen for a student
information system. If a user clicks on a control button labelled Students, Courses or
Timetables they will be directed to a sub-menu screen which gives them further subject
category choices. The Help button will provide general information about the system and
the Exit button will allow the user to sign out of the system.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

100

Systems design

Fig 4.17 System main menu screen produced with QSEE storyboard tool

-- Source documents that contain data to be input may influence the design of
input screens.

-- It should be possible to return to the main menu or sub-menus from any screen.
-- Screen layouts should be consistent. This means that their look and actions should

be the same throughout the system. For example, action buttons or menu tabs such
as Save, Delete, Exit should appear in the same location on all screens that use them.

-- Do not overload screens with too many items (data entry fields, lists, buttons etc.).
-- Each screen should have a meaningful title indicating its main function.
-- Colour schemes (background and text), typefaces and font sizes should be chosen

to ensure readability. Remember to consider any users who are colour blind or
have poor vision. Appropriate use of colours or sounds can highlight important
information but take care not to overload users with too many of these.

-- All control/command buttons, data fields and icons should be clearly labelled.
Symbols or images used for buttons should be obvious.

-- If commands or options are not available to a user, they should be hidden or
greyed out.

-- To ensure data quality, validation and error checking are included where possible
to prevent invalid data from being entered. The common IT phrase “garbage in,
garbage out” (GIGO) describes the likely outcome if this is not in place.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

101

Systems design

101

The following ORACLE APEX data entry and retrieval screen shows a typical master detail
relationship form-based layout for displaying music companies (master record) and their
CDs (related detail records), which incorporates some typical GUI options – radio buttons,
drop down lists and check boxes. These help to speed up data entry and retrieval. Individual
data field items can also be colour coded to highlight different types of data e.g. grey for
not editable or red for an invalid entry value.

Download free eBooks at bookboon.com Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

SYSTEMS ANALYSIS AND DESIGN

102

Systems design

Fig 4.18 Master detail form screen layout

Typical checks that can be incorporated to ensure valid data is entered include:-

-- Data type checks i.e. making sure only digits have been entered where a numeric
value is required.

-- Input masks which ensure that only data that is entered in a specified format can
be accepted, e.g. a date in DD/MM/YY format.

-- Look-up checks can be used to check a value exists, e.g. that a product code exists
in the product file.

-- Range checks can be used to ensure that a value entered is within an allowable
range, e.g. between minimum and maximum hourly rates of pay.

-- Cross checks can be made to ensure that the value in one field is compatible with
the value in another field. For example, if a new student must be aged 18 or over
to study a particular course the date of birth and the course code would need to
be checked for compatibility.

-- Batch checks can be used where batches of data are input together. A check can be
made to ensure that all the items in a batch of source documents have been entered
by totalling up a particular set of values in the batch then checking whether the
system total is the same after the same values have been entered. A typical example
of this would be totalling the order quantities on a batch of orders.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

103

Systems design

If data entry errors are detected the user should be prompted with an informative error
message advising them of the problem and how to rectify the situation, preferably one
which avoids entering all but the incorrect values again.

As it is important to be able to enter and retrieve accurate information quickly and easily and
avoid entering data unnecessarily, the following guidance should be applied where possible:

-- Use default values e.g. the system date for date fields or a date picker, and drop-
down lists of items or automatic searching based on text as it is entered to select
a value. This speeds up data entry and helps avoid typing errors.

-- Group related data entry items together and ensure that the cursor tabs through
them in the sequence needed for entry.

-- Include short cuts where possible to speed up access to a menu or data entry, e.g.
pressing the Ctrl and C keys to copy some text and Ctrl and V to paste it into a
data entry field.

Feedback and help are important to users. Feedback ensures that the user is informed of
their progress, i.e. has a data record been successfully saved or deleted. Help should be
included to assist with general understanding and specific guidance relating to a particular
action or request.

-- Feedback messages should be clear and remain visible long enough to be read by
the user.

-- The user may be prompted to acknowledge they have read the message before it is
removed, often by clicking on an “OK” button.

-- Messages should be displayed in a consistent location on the screens so the users
know where to look.

-- Help should be available in a form that is relevant at the point it is requested.
-- A general help facility may allow the user to find out information about a particular

screen or function. Context sensitive help may be invoked when a user needs to
know what needs to be done at a particular point in time, e.g. what needs to be
entered into the data entry field in which the cursor is currently located.

Most systems include some reports that list or summarise data, in some cases in the form
of graphs or charts. Traditionally, reports were printed and whilst some still are, the trend is
towards screen-based reporting, although both forms share a number of design considerations.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

104

Systems design

104

Many systems now offer users the ability to specify or customise their own reports to show
only the data required and in a format that they require for a specific purpose. In order to
achieve this, they may use a report generator or wizard or alternatively a Query By Example
(QBE) function. A QBE will allow the user to choose only the data values they want and
then automatically generate an SQL SELECT statement or other program code to retrieve
the required data from within the system database. As with screen design, users should be
involved in the design process to ensure that the reports satisfy their requirements. This
should include using report templates or mock-ups in order to gain feedback.

There are three main types of report:-

Detail reports – these list lines of output for each record and can often result in lengthy
reports running to many pages e.g. lists of all customers or stock items. Consider carefully
whether these reports are necessary, especially if they are printed, as this may prove costly
if they need to be reprinted regularly due to frequent changes to the data.

Download free eBooks at bookboon.com Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

https://subsites.bookboon.com/email/b/2c0817b4-f5c9-4f95-aceb-48efe083e8cb?utm_source=bookadvertisment

SYSTEMS ANALYSIS AND DESIGN

105

Systems design

Summary reports – these tend to be used by managers and summarise the data that may
appear on detail reports, for example a stock summary report may only list the stock item
categories and the total number of items within the category, rather than every stock item.
Another example might be a university that wants to know how many students it has on
each course. In this case it is only necessary to list the total numbers.

Exception reports – are produced that show only details that match a specific criterion,
for example all students who have been absent in the last week.

Report layouts should include the following:-

Report headers and footers. Headers appear at the start of the report and should include
the report title and any relevant dates i.e. For Week 1 01/01/2016–07/01/2016. The header
or footer should also include the date and time the report was produced to allow users to
check they are looking at the correct version. Report footers tend to contain overall report
or grand totals.

As reports may run to many pages each report should also have a page header and footer on
every page. The page headers include column headings which should be concise descriptions
of the data that will be displayed beneath them. The page footer will normally include the
page number and report run date.

When reports include data grouping, a control break is used to show the totals for each
individual group within a group footer. The following example student report includes
control breaks for each student level.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

106

Systems design

Report
header

Page header

Group footer

Report
footer

Page footer

Fig 4.19 Report layout

If producing different reports, try and ensure that there is consistency across them, i.e.
ensuring dates and numeric data are displayed in the same formats and that report headers
and page footers are in the same page position. As more systems access the Internet, using
the web, email, mobile devices and social networking platforms, the UI requirements for
these need to considered along with relevant design standards e.g. (United States government,
n.d.). Newer technologies are emerging such as virtual reality and in the future these may
be utilised to allow users to interact with systems in a more immersive way.

Confidentiality needs to be considered when designing the UI. It is important to ensure that
users only have access to the data they are permitted to work with. Likewise, care should
be taken to ensure that any printed reports containing confidential or sensitive information
are adequately controlled and managed.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

107

Systems design

107

Exercise 2

a)	 Produce a story board screen design suitable for entering essential data
from the Invoice document shown in Exercise 1 above. Remember to include
relevant control buttons.

b)	Why would the following code not be suitable for accurately identifying a
university student? 1234CMPY1. It consists of 4 unique digits followed by
3-character course code and Y1, Y2, or Y3 indicating the year of study.

c)	 What report type would be suitable for a user wanting to identify the best-
performing student on a course?

Download free eBooks at bookboon.com Click on the ad to read more

Designed for high-achieving graduates across all disciplines, London Business School’s Masters
in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to
work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access
to the School’s network of more than 34,000 global alumni – a community that offers support and
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for
top-performing
graduates

* Figures taken from London Business School’s Masters in Management 2010 employment report

http://www.london.edu/mm/

SYSTEMS ANALYSIS AND DESIGN

108

Systems design

Exercise 2 feedback

a)	

b)	 Whilst the code appears to be informative, indicating the course and year, as
the student moves through the years the code would be misleading and if it was
changed it would cease to act as a permanent unique identifier. A similar problem
would arise if the student changed courses.

c)	 An exception report – the report would only be showing the details for
a single student.

4.7	 SYSTEM ARCHITECTURE

Once the system has been designed from a software requirements perspective the system
architecture needs to be specified. This is the technical infrastructure needed to support
the system. It is particularly relevant if the system is to be implemented and maintained
by the organisation using the system. If the system is to be outsourced, e.g. based in the
cloud or supported by a software service provider, the infrastructure will in most cases be
pre-defined by the suppliers. Cloud computing relies on using shared remote servers hosted
on the Internet and this provides for greater flexibility, scalability and a different approach
to financing without the need to implement and maintain the underlying infrastructure.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

109

Systems design

A number of factors can impact on the architecture chosen for a system, including existing
corporate infrastructure, scalability to allow for growth in data volumes and number of
users, any legacy (old existing) system requirements and any web integration needs. System
security requirements may also have an impact on the infrastructure design. Initial costs
and total cost of ownership will also need to be considered against the technical needs.

Traditionally, early commercial computing systems (1960s–1970s) were supported by
mainframe (or mini) computers, usually based in and maintained by an organisation’s central
IT/computing department. These computers hosted all the organisation’s systems and data
and users interacted with them via dumb (no real processing capability) terminals that
were connected directly to the mainframe. Mainframes are still used by some organisations
which need to process large volumes of data at one location, e.g. banks. Mainframes were
initially used with batch processing systems which involved entering large volumes of data
and then processing the batches of data, often overnight, to update the main system files.
Whilst this approach to data processing is suitable for less time-critical applications, it has
been superseded in many cases by online transaction processing systems which process
the entered data immediately in order to ensure that all data files are kept current.

The arrival of business personal computers (PCs) in the 1980s allowed users to host and
run their own software and keep their own data, e.g. word processors and spreadsheet
applications. Eventually these stand-alone PCs were connected to networks which allowed
them to exchange data. Although stand-alone PCs provided some benefits they created
issues relating to security and data consistency as different users may have used different
versions of the same database.

Eventually local area networks (LANs) appeared. These allow stand-alone PCs (referred to as
clients) to be connected to computers acting as servers which hold programs and data. These
LANs also allow printers, document scanners and other specialist devices to be connected
for sharing. Wide area networks (WANs) also exist, which allow the connection of clients
or LANs over very large distances, e.g. in different countries. Systems using networks are
often referred to as distributed systems and in most cases when a user accesses data via a
network connection they are unaware of its underlying architecture.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

110

Systems design

110

There are a number of network configurations, although they are all regarded as client-server
designs, and expert network architects are often used to specify and maintain complex
networks. In a client-server configuration, the client sends a request for data over the
network to the server. The server then processes the request and extracts the required data
which is then sent back via the network to the client. Clients are often referred to as fat or
thin. A fat (or thick) client is one which handles most of the application processing and is
often a PC or laptop computer. A thin client does very little processing and instead relies
on the server carrying out the processing, which usually results in better performance and
a lower hardware cost. A thin client maybe a simple dumb terminal consisting of a screen,
keyboard and mouse with no or limited processing capability.

Client-server designs are generally regarded as two-tier or three-tier. The clients in both designs
handle the user interface. In a two-tier design the application processing is shared between
the server and client, with all the data being stored on the server. In a three-tier configuration
an application server sits between the client and the data server. This middle layer application
server handles the client requests and breaks them down into data access commands that are
handled by the data server. Some more complicated designs have multiple layers; these are
referred to as n-tier. In multi-tier networks specialist middleware software allows for data
transfer between the different levels, including enterprise applications and web services.

Download free eBooks at bookboon.com Click on the ad to read more

Get Started

Go to www.helpmyassignment.co.uk for more info

Get a higher mark
on your course
assignment!
Get feedback & advice from experts in your subject
area. Find out how to improve the quality of your work!

http://www.helpmyassignment.co.uk

SYSTEMS ANALYSIS AND DESIGN

111

Systems design

The choice of network configuration, i.e. data storage location and where the processing
takes place, can have a significant impact on system performance and is often a balance
between centralisation and decentralisation.

4.8	 NETWORK TOPOLOGY

Network topology defines the configuration of a network, in particular the logical – the
way the network components interact, and the physical – the actual components and
connections. The Open Systems Interconnection model (OSI) defines the seven layers
that perform functions within a network and how they interact with one another in order
to allow data to be transferred from one device on a network to another. The seven layers
(lowest to highest) are physical, data, network and transport which form the transport set,
and the application set which consists of session, presentation and application.

There are three main network configurations – Bus, ring and star.

Bus topology

In the older, simpler topology bus network, all devices (clients and servers) are connected
to a central bus (cable) which carries all the data between the devices. The advantage of this
topology is that it requires less cabling than other topologies and allows for devices to be
added or removed from the network at any time without causing disruption to other devices.
Failure of a device on the network will not affect the other devices directly. However, the
major disadvantage is that if the central bus fails, the whole network will fail to operate,
also, as more users are added to the bus the performance declines.

Bus

Server

PC/Terminal

Printer

Fig 4.20 Bus network

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

112

Systems design

Ring topology

Ring networks, although somewhat dated, are still used in some installations, mainly mainframe
environments. Each node (device) on the network connects to two other devices and forms
a continuous loop which allows data to transfer around the network. A disadvantage with
a unidirectional ring is that if a node fails this can prevent the other nodes on the network
from operating. Dual ring (counter rotating) networks can be configured to avoid this
problem. A ring network can perform better than a bus network under heavy loads.

Server

PC/Terminal

Printer

Fig 4.21 Ring network

Star topology

Star networks are the most commonly used topology. A simple star network contains a
switch. This central node device connects to all the other nodes (devices) on the network
and allows the network data to be routed through it. Each node is connected directly to the
switch, which sends data to only the required devices. The advantage of the star network
is that if one node device fails it does not affect the other nodes; however, if the switch
fails, no computers can use the network, though this problem can be avoided by utilising
a backup switch.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

113

Systems design

113

Switch

PC/Terminal

Printer
Server

Fig 4.22 Star network

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/icoast

SYSTEMS ANALYSIS AND DESIGN

114

Systems design

Networks are commonly linked to other networks or the Internet by means of a connection
called a gateway (proxy server) using a device called a router. A router chooses the best
path for sending the packets of data. Protocols such as Internet Control Message Protocol
(ICMP) are used to establish communications with other devices and choose the route
between hosts.

With the growth of wireless networking technologies, many organisations are also using
wireless local area networks (WLANs) as this saves on cabling costs and provides flexibility
in terms of connected device numbers and location. However, there can be issues regarding
security and electrical interference. There are a number of wireless networking standards e.g.
Institute of Electrical and Electronics Engineers (IEEE) 802.11n, and these are constantly
evolving to support newer technologies.

Exercise 3

a)	 What are the benefits of a wireless LAN?
b)	Which is currently the most widely used network topology?
c)	 What device is used to provide a network gateway to the Internet?

Exercise 3 feedback

a)	 Relatively cheap to install and provides more flexibility in terms of adding
additional users and their working location, i.e. office.

b)	The star topology.
c)	 A router.

4.9	 DESIGN DOCUMENTATION

Using a structured design approach when the software and hardware designs have been
completed will generate a system design document which specifies the detailed design. The
format of such a document varies between organisations but should include a management
introduction, system architecture (hardware and software), design diagrams including the
database design, human-computer interface (e.g. screen layouts), inputs (e.g. data entry
screens) and outputs (e.g. reports, screen outputs). An example template can be found here:-

http://doit.maryland.gov/SDLC/Documents/sys_design_doc.doc (Maryland State Government)

Download free eBooks at bookboon.com

http://doit.maryland.gov/SDLC/Documents/sys_design_doc.doc

SYSTEMS ANALYSIS AND DESIGN

115

Systems design

Although much of the content, such as screen layouts, will have been reviewed and approved
by system users during the design process, other stakeholders such as IT staff may need to
consider the design and approve it. Similarly, management will need to be satisfied with the
overall design and implementation implications relating to costs and staffing. The analyst
will normally distribute the document to the stakeholders followed by a presentation in
order to explain anything that is not clear and to answer any questions. The outcome will be
one of the following – management approval to proceed, a request to undertake additional
design work, or, in some cases, to cease work on the project. If approval is given the systems
development phase can begin.

4.10	 SUMMARY

Decisions need to be made as to how the proposed system is to be implemented. This may
include outsourcing the development or procuring an existing software solution.

If the system is to be developed, the data requirements need to be modelled and the user
interface designed. Most information systems use a database to hold their data so entity
modelling, which is a top-down approach, can be used to produce a logical data model. A
physical model is then derived which is used to produce a set of table designs. These are
checked by means of the bottom-up approach of normalisation which ensures that a set of
correctly-structured table designs is produced.

UI design is crucial to the success of a system and care should be taken to ensure that users
are consulted in order to avoid costly changes at later stages in the SDLC.

The system architecture must be designed to take account of the system requirements and
any organisational technical constraints.

The work of this phase is recorded in the system design document and is approved by all
relevant stakeholders before the system development phase begins.

Further reading

(Gould, 2015)

(Shneiderman & Plaisant, 2010)

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

116

Systems implementation

116

5	 SYSTEMS IMPLEMENTATION

On completion of this chapter you should be able to:

•	 understand the software development process
•	 recognise software quality processes
•	 apply software design methods
•	 understand testing approaches
•	 recognise training needs
•	 understand changeover approaches.

The systems implementation phase of the SDLC includes developing the system from the
system specification and testing it before it is implemented for the system users. As developing
software (application development) is a costly process, it is important that quality control
methods are used to ensure that the system produced satisfies the users’ requirements. In
order to achieve this, software engineering approaches are applied.

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/ChalmersINTL2016

SYSTEMS ANALYSIS AND DESIGN

117

Systems implementation

Software engineering focuses on developing software using well-defined design processes,
documentation and testing regimes. The software engineering institute (SEI) (Software
Engineering Institute, n.d.) developed a set of quality standards referred to as the Capability
Maturity Model (CMM)® aimed at improving software development processes and therefore
software quality. These standards classify an organisation’s development processes using 5
levels of maturity and have been applied in many organisations in order to improve. A newer
SEI technical report – CMMI® (Capability Maturity Model Integration) for development
(CMMI Institute, 2010) outlines collections of best practices to help organisations to improve
their processes. The five maturity levels are shown in order of increasing maturity as follows:-

Level 1 – Initial – the least mature, for weakly defined or ad-hoc processes.

Level 2 – Managed – processes are planned and executed.

Level 3 – Defined – processes are well defined and understood.

Level 4 – Quantitatively Managed – organisation has measured and controlled processes.

Level 5 – Optimising – Continuous process improvement.

The International Standards Organisation (ISO) has also produced a set of standards for
software and systems engineering to help organisations confirm the quality of software
systems (International Standards Organisation).

5.1	 SOFTWARE DESIGN

In a traditional structured (or an O-O) approach to system development the next step will
be to convert the design into a set of software modules/programs. These modules will be
coded and tested to ensure they meet the specification, and at a later stage they will be
amalgamated with other tested modules to form the complete system which will, in turn,
have to be tested to ensure that all the modules interact correctly.

Although the bulk of the application development is undertaken by software developers the
analyst may play a role in the software design and will also be involved in some aspects of
the testing. The information needed to help design the software will have been collected
and documented in the earlier stages of the SDLC and much of this will be held within
the CASE tool repository.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

118

Systems implementation

Agile methods of software development do not rely on trying to design all of the software
from the outset, as the emphasis is on iterative development which involves developing
some code for a specific function, testing this and then gaining feedback from the users
promptly. This process is repeated until the software is deemed acceptable.

Where a structured approach to software development is used a top-down process of
decomposing the software functionality into modules is adopted, similar to that of a DFD.
This modular approach involves producing a set of structure charts which show the software
modules and how they are linked to one another.

The following structure charts illustrate modules and how they interact with one another.
Each module is shown as a rectangle. Each rectangle has an identifying number. The higher
level modules are referred to as control modules as they control (utilise) the subordinate
modules that are linked to them. In the following example the control module is labelled
1. It controls sub-ordinate modules 1.2 and 1.3.

It also uses a library module, illustrated with two vertical bars. A library module contains
re-usable code that may be utilised from any part of the chart. Arrows emanate from the
control module to the subordinate modules. Where data passes between modules this is
referred to as a data couple and is shown by means of a small arrow with an open circle
pointing in the direction the data travels. In some situations, data, in the form of a flag which
indicates a particular status, is sent from one module to another, e.g. ‘student enrolled’. This
is referred to as a control couple and is represented by a small arrow with a solid circle.

Library
module

1 Register
student

1.2 Obtain Id 1.3 Create
record

Fig 5.1 Example structure chart

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

119

Systems implementation

119

In some cases, a control module determines which subordinate module is called, based on a
specific condition. This condition is shown as a diamond on the end of the arrowed line. For
example, a control module in a university admissions system may check a student’s status and
then decide to call either an undergraduate admissions module or a post graduate module.

Check status

Undergrad Postgrad

Fig 5.2 Structure chart Control module with a condition

In some situations, a module or set of modules may be repeated. This is shown by means of
a loop around the arrows linking to the repeated subordinate modules e.g. a create invoice
module will add an item then calculate the total for the item; this will be repeated for each
invoice item and finally an overall invoice total will be calculated.

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/elearningforkids

SYSTEMS ANALYSIS AND DESIGN

120

Systems implementation

Create
Invoice

Add item Calculate
item total

Calculate
invoice total

Fig 5.3 Loop showing 2 modules repeated

When designing modules, consideration should be given to producing reusable (library)
modules to help reduce the overall amount of code. An example of this approach is to design
a generic validation module which may be used by different parts of the system for checking
that input information such as telephone numbers or dates of birth are correctly formatted.

When designing the structure chart it is desirable to try and produce modules that are
highly cohesive but loosely coupled. Cohesion relates to the amount of processing a module
undertakes; a highly cohesive module undertakes a single function. The benefit of this is that
it will be a simpler module to code and test and it is also more likely to be reusable, e.g. a
module that just checks a student_id as opposed to one that checks all of a student’s details.
Larger modules with more functionality should be considered for decomposition into smaller
more cohesive ones. Coupling relates to the levels of interdependence between modules.
Loosely coupled modules are independent, which makes it easier to modify them. In tightly
coupled modules there is more dependence on shared data variables or control information.

The logical DFDs produced earlier provide a starting point for the structure chart hierarchy,
with higher level processes usually translated into control modules which control lower
level modules derived from lower level processes. The processes are decomposed until the
primitive processes have been defined as modules. Note. Just as DFDs have multiple diagram
levels, a structure chart may also show modules at a number of sub-levels. For example,
in Fig 5.3 above the Calculate item total module may be linked to a lower level module
which calculates the tax to be paid for the item.

The data items that are passed between modules can be identified from the DFD data flows
and shown as data couples. Any loops and conditions should be added along with required
control couples. The charts may need to be redrawn a number of times following input
from software developers etc.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

121

Systems implementation

Try and organise the structure chart so as to have high cohesion and loose coupling.

Where object-oriented development is being undertaken the object model, consisting of class
diagrams and object relationship diagrams, (see Chapter 3) is utilised, as the class diagrams
show the data (attributes) and the processing (methods) required.

The object methods are converted into modules, and messages are chosen to trigger them. The
analyst or developer will consider sequence and state diagrams to help identify the messages
used to trigger the modules. O-O software is often referred to as event-driven, as each
message results in an action process being performed. Just as with structured development,
cohesion and coupling needs to be considered; classes should be independent from other
classes (loosely coupled). Similarly, an object’s methods should be loosely coupled with other
methods but be cohesive, i.e. carry out closely-related activities. A key aim is to produce
code that is easy to understand and maintain.

Agile methods aim to speed up development by using alternatives to traditional project
management, e.g. scrum development which involves using self-organising cross functional
teams working on a small sub set of system requirements identified by a system user, often
referred to as the customer or product owner. Each of these concise requirements is referred
to as a user story, e.g. “A lecturer wants to be able to identify a student whose attendance
falls below the expected norm”. Each requirement is developed collaboratively using a series
of rapid iterations called sprints (usually two weeks in length.) These effectively incorporate
all phases of the traditional SDLC in order to produce usable software by gaining user
feedback after each iteration so that improvements can be made. The user stories are normally
prioritised by importance and the developers will assign a score that represents the level of
complexity of the task, which is used to plan and allocate development resources. A plan
for releasing the stories is drawn up and planning meetings allocate user story tasks to team
members. The plan is modified as and when new requirements come to light. After each
iteration the prototype is checked by the user and the cycle is repeated until all the user
stories have been completed and accepted.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

122

Systems implementation

122

Agile development environments often use pair programming techniques referred to as
Extreme Programming (XP). This ‘inspect-and-adapt’ approach aims to improve software
quality. It involves two programmers working on the same task together. One will do the
coding (programming) and the other will observe and check the code. This method involves
regular code reviews and discussions to ensure that the output is acceptable. The testing
involves drawing up a test plan before the code is developed, and often automated testing is
used with the aim of trying to break the code. There are regular meetings with the customer
where feedback is obtained and any new requirements can be identified and incorporated.

Although Agile development is gaining in popularity there are some potential disadvantages,
mainly in that the adaptive approach can allow for requirements creep, with time schedules
becoming harder to predict as new requirements are added. The choice of development
approach to be used will depend on a range of factors including type of system, time
available and methodology expertise etc.

Download free eBooks at bookboon.com Click on the ad to read more

© Agilent Technologies, Inc. 2012 u.s. 1-800-829-4444 canada: 1-877-894-4414

Teach with the Best.
Learn with the Best.
Agilent offers a wide variety of
affordable, industry-leading
electronic test equipment as well
as knowledge-rich, on-line resources
—for professors and students.
We have 100’s of comprehensive
web-based teaching tools,
lab experiments, application
notes, brochures, DVDs/
CDs, posters, and more. See what Agilent can do for you.

www.agilent.com/find/EDUstudents
www.agilent.com/find/EDUeducators

http://www.agilent.com/find/EDUeducators

SYSTEMS ANALYSIS AND DESIGN

123

Systems implementation

5.2	 SOFTWARE DEVELOPMENT AND TESTING

The coding phase involves taking the design and producing the code in whatever programming
language has been chosen, using a suitable integrated development environment (IDE)
and any other required software tools such as report generators. The choice of language and
development environment may be determined by the development organisation’s standards
and whether the system is to be web based. Note. Some program code may be automatically
generated using CASE tools, e.g. database tables.

Software needs to be tested to ensure that it satisfies the system specification requirements
and is reliable. Test plans are normally drawn up which indicate the nature and frequency
of testing to be carried out. These cover unit testing, integration testing, system testing
and user acceptance testing. In some cases, the analyst may be involved in setting the test
scenarios and checking the results.

Typically, a programmer will test the individual modules they have written (unit testing).
They will be looking initially to remove syntax errors caused by code not being written to
conform to the language specification and structure, e.g. command word spelling mistakes.
Logic errors also need to be eliminated. These are caused when the code executes but the
desired results are not as expected. In the case of Agile development other programmers are
involved in code reviews called structured walkthroughs to try and spot errors. Test data
is prepared to test all possible situations, including the use of invalid data values. In order
to test a module that will interact with others that are not yet completed, a stub test can
be set up whereby a simulated value representing the other module’s output is used.

Following successful unit testing, integration testing can take place, in which two or more
related modules or programs are tested together to ensure that they interact correctly, i.e.
handle data that is transferred between them. As with other types of testing, a range of data
sets should be used, both normal and invalid, to thoroughly test the software.

When integration testing is complete, system testing can take place. This is when the whole
system, comprising all the modules/programs, is tested. This type of testing ensures that the
system meets the system specification and performance expectations, i.e. it can handle the
predicted volumes of data without unacceptable performance degradation issues. When the
developers and analysts are satisfied with the system test, users will be invited to take part
in user acceptance testing to ensure that they, too, are satisfied that the system meets their
requirements and expectations. In order to carry out this testing it may first be necessary
to undertake user training for users, their managers and IT support staff. Note. This type
of testing will need to be undertaken for both systems developed in-house and those that
have been outsourced.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

124

Systems implementation

Whilst no system can be fully tested, the more thorough the testing is, the lower the risk
of serious problems when the system is released for live use. Often a balance needs to be
struck between the amount of time set aside for testing and the completeness of the system,
and in some situations a system may be released with some functionality to be added at a
later date.

5.3	 DOCUMENTATION AND TRAINING

Before the system can be handed over for release, adequate documentation needs to be
prepared. This involves ensuring that program documentation has been produced by the
developers. This documentation is important as it will aid the developers in the future
if bugs (software defects) are found or changes need to be made to the functionality. In
addition to program documentation, system documentation is required. This describes
how the system functions and will include material that will assist analysts and developers
who need to support or enhance the system. Much of this documentation will have been
created in the analysis and design phases of the SDLC and includes such items as screen
layouts, data file definitions, models etc. If changes are requested and made to the system,
they should be included in the documentation.

Depending on the nature of the system, operations documentation may also be needed. This
is usually necessary when IT staff who are operating the system need to know when various
batch reports need to be run or backups taken, along with any relevant security checks.
Finally, user documentation is provided to ensure that the system users have enough clear
information to enable them to make use of the system. This often includes a user manual
which tends to be available on-line from within the system, rather than printed. In addition
to the user manual, context-sensitive help may be made available from within the system,
describing the available options to a user trying to use a particular screen or function. These
materials are usually produced by the analyst, although in some organisations this may be
carried out by members of the technical support team. Adequate time should be allocated
to ensure the documentation is prepared and checked before the system is released for use.

Although in an ideal situation the system documentation should be sufficient to enable a
user to make use of the system, most information systems require user training as well.
Before a system is released the analysts will draw up a training plan to ensure that staff
receive training in those aspects of the system they will be using. The amount and depth of
training will vary depending on the level of system use to be undertaken. The training may
be delivered by analysts, members of the development team or IT support staff. However,
in cases where the system has been acquired as a package, or specialist hardware has been
utilised, vendor training may be essential.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

125

Systems implementation

125

There are many ways in which training can be delivered and some or all may be used
depending on the organisation’s needs. As well as face-to-face training for individuals or groups,
digital training resources may be made available utilising web or multimedia technologies
to produce videos or online training simulators. In some situations, when groups of users
have been trained they may go on to train other users.

5.4	 SYSTEM CHANGEOVER

When a system is replacing an existing system a decision will need to be made as to how
the changeover will take place. This is important, as usually data from the existing system
will be needed within the new system. In some cases, it is relatively easy to export data from
existing databases and import it into the new system’s database using standard conversion
formats. However, in more complex cases special conversion programs are developed to
convert the data into the correct format in order to transfer it into the new system.

Download free eBooks at bookboon.com Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

SYSTEMS ANALYSIS AND DESIGN

126

Systems implementation

There are four main approaches for converting from the old system to the new one

•	 direct changeover
•	 parallel operation
•	 phased changeover
•	 distributed changeover

Direct changeover is where the old system ceases to be used as soon as the new system
is implemented. This is usually the least costly approach but the riskiest, since if serious
problems are encountered after the system is put into use it will not be possible to revert
back to using the old system due to data incompatibilities. Also, direct changeover does
not allow for checking outputs with the old system to ensure they are valid.

Parallel operation keeps the existing system in use alongside use of the new system. This
allows for easier fall-back if the new system encounters serious problems but creates a
potentially costly overhead of having to enter data into two systems. This approach allows
for checking outputs to ensure they match with the old system but is not suitable if the
two systems are not compatible.

Phased changeover allows the system to be implemented in stages. This means that the risks
are reduced as only one part of the system will be affected if there are serious problems. This
approach is less costly than the parallel operation and can be adopted if the new system
can be modularised in such a way as to work with the existing system.

Distributed changeover is one in which the whole system is piloted by a part of the
organisation e.g. by a branch of a company. The old system will still be in use by the
organisation so if there are problems only a small number of users will be affected and
fall-back is still possible.

Each of these methods has risks and cost implications and it will be up to the analyst, in
consultation with other stakeholders, to decide on the best approach.

It is important that the system implementation includes physical, logical and behavioural
security measures.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

127

Systems implementation

Physical security relates to hardware and software and involves ensuring this is kept in
a secure environment with appropriate access controls in place to prevent unauthorised
persons gaining access. Where networks are utilised, adequate firewalls need to be in place
to prevent unwanted access. Further security measures may need to be implemented,
particularly where systems utilise the Internet and may link with other third party systems
such as on-line payment services.

Logical security refers to software controls within the system that prevent unauthorised
users from accessing functions/data that they should not have access to. This involves using
passwords and ensuring encryption techniques are utilised.

Behavioural security revolves around users of the system being made aware of safe
operating and security procedures to prevent the system’s security and confidentiality being
compromised. This involves ensuring rules are implemented regarding the safe use of
passwords and ensuring that sensitive system information such as printed reports are kept
securely and destroyed when no longer needed.

The final stage of the implementation phase is to carry out a system review and produce an
evaluation report for management. This takes place after the system has been implemented
and is used to assess how successful it is in terms of meeting the user’s specification and
expectations and whether the expected benefits have been achieved. A further purpose is
to reflect on the system and suggest any possible future system enhancements. The report
will also highlight any valuable lessons that may have been learned relating to the project,
including any technical issues, predicted and actual costs and planned and actual project
duration, as these may be of benefit to other members of the IT development team for use
in planning future system development projects.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

128

Systems implementation

128

5.5	 SUMMARY

The systems implementation phase covers the application development or system procurement,
testing, documentation, training, implementation and evaluation. Software development
involves converting the system design into a set of suitably structured modules and programs.
Testing plays an important role in ensuring that the system meets the specification and that
it performs to an acceptable standard so as to ensure a quality solution is implemented.
Documentation and training are also required so that the users can make effective use of
the system. In order to implement the new system, a suitable changeover strategy needs to
be adopted to minimise risk during the transition period. Finally, following implementation,
an evaluation review should be carried out, resulting in a report which indicates any future
system enhancements and highlights any technical or cost-related issues that may be relevant
when undertaking future projects.

Further reading:
(James, n.d.)

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/gautrain

SYSTEMS ANALYSIS AND DESIGN

129

Systems maintenance

6	 SYSTEMS MAINTENANCE

On completion of this chapter you should be able to:

•	 describe system support activities
•	 understand system maintenance
•	 be aware of security issues
•	 understand backup and recovery procedures.

Systems maintenance is the last phase of the SDLC, and includes supporting the system
so that it operates reliably and in a secure environment. Once a system has been released
for use it is usually supported by the IT support team, although in the case of a system
that has been outsourced this support may be provided directly from the vendor. The IT
support team may include administrators, technicians, maintenance programmers (software
developers who tend to existing systems) and systems analysts, some of whom will have a
thorough knowledge of the system and so be able to identify and solve problems speedily.

6.1	 USER SUPPORT AND TRAINING

A user’s first point of contact is usually with the IT help (or service) desk. The help desk will
have staff who are sufficiently trained to assist with most technical or operational queries.
If the query cannot be solved by the front line staff, the issue may be escalated to more
specialised staff or members of the system development team such as the systems analyst.
Requests and problems are normally logged by the help desk and are reviewed periodically
to see if there are recurring issues that need addressing, perhaps by training or system
enhancements. The IT help desk is normally also responsible for system training, as this is
necessary for new staff members and for existing staff when changes or upgrades are made
to the system. In addition to dealing with any software related queries the IT support team
will also be responsible for assisting with any hardware or technical problems i.e. replacing
a faulty PC or installing a new version of the system software.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

130

Systems maintenance

6.2	 SOFTWARE MAINTENANCE

Over the lifetime of a system various types of maintenance will be needed to ensure the
system continues to satisfy the users’ needs. There are four main types of maintenance:-

Corrective maintenance relates to dealing with faults in the hardware or software. Software
faults are often referred to as “bugs”; these cause unexpected or incorrect results and in
serious cases cause the system to stop functioning. These faults will often need the software
programs to be debugged (checked and the faulty code corrected). Also, hardware problems
such as faulty PCs or network components can arise and will need to be addressed. The IT
team will need to assess the seriousness of the faults in order to decide what action needs
to be taken and by when.

Adaptive maintenance addresses changes that need to be made to the system to deal with
new demands. These may be changes imposed in order to satisfy the requirements of an
outside agency, such as the government introducing changes to the tax regime that involves
altering tax calculations.

Perfective maintenance relates to changes made to the system in order to improve its
functionality or performance, for example, adding a new report or upgrading some system
hardware to increase response times.

Preventative maintenance is carried out in order to prevent future problems. This may
involve making changes to cope with increasing volumes of data or transaction levels that
may result in performance degradation issues if not addressed.

The costs of supporting a system over its lifetime can be significant, therefore support needs
to be managed carefully, including monitoring and prioritising maintenance tasks. Essential
tasks are those needed to keep the system functioning, whereas desirable ones may include
adding new features.

There are usually a number of maintenance releases of the system incorporating changes.
Care needs to be taken to ensure that there is adequate version control of the releases.
This involves maintaining accurate documentation regarding the changes and ensuring that
backup copies of the different software versions are maintained in case it proves necessary to
revert to an earlier version following unexpected problems with the new version. Software
packages such as git https://git-scm.com/ are available for this purpose. Note. Support costs
tend to be high in the period following system implementation until the system is bedded
in and then they rise again towards the end of its life as more effort is needed to keep it
functioning effectively.

Download free eBooks at bookboon.com

https://git-scm.com/

SYSTEMS ANALYSIS AND DESIGN

131

Systems maintenance

131

6.3	 SYSTEM PERFORMANCE

Whilst the system is in use its performance and reliability are monitored and managed by
the system administrator to ensure that it is coping adequately with the demands placed
on it. Fault management procedures are also needed to manage problems such as system
failures, user-caused problems, environmental problems such as power failures and even
natural disasters such as flooding or earthquakes.

Response times need to be maintained to agreed levels otherwise users will become frustrated
and key business deadlines may be missed. To avoid performance problems, capacity planning
needs to be carried out. This includes monitoring and forecasting throughput levels, e.g. the
number of and time taken to carry out transactions such as making a hotel room booking.
This is necessary to allow for capacity changes such as increased workload levels or the
addition of more users. Changes implemented to address these issues can include altering
usage patterns of the system, by running certain programs at off peak times, upgrading
hardware or communications links or altering the software. Specialist tools may be utilised
to help monitor aspects of system performance such as network diagnostics packages.

Download free eBooks at bookboon.com Click on the ad to read more

http://s.bookboon.com/Item24

SYSTEMS ANALYSIS AND DESIGN

132

Systems maintenance

6.4	 SYSTEM SECURITY

As information systems are essential to organisations, it is crucial that they are available
when required and that they continue working correctly even when events such as deliberate
threats, accidents or disasters occur. Establishing a secure system is a complex business and
covers not just the hardware and software but also the way in which people interact with
the system.

The CIA triad is a model which shows the three main goals for information systems security.

Information
security

Confidentiality

Fig 6.1 CIA triad

Confidentiality is the protection of information from unauthorised access. This is particularly
important when personal or sensitive information is to be managed. It can be maintained
safely if suitable access controls are put in place to ensure users can only access permitted
information.

Integrity is the keeping of accurate information. It is important to ensure that information
cannot be changed or lost due to errors or improper access. Access controls can be put in
place to avoid this.

Availability is making information available when and where needed. This means ensuring
that the system can keep functioning so as to provide the required information. Security
mechanisms need to be in place to ensure that the system components are secure and that
the system can continue to operate under a range of conditions.

The above goals must be considered as part of the system security policy. In order to
produce the policy, it will be necessary to undertake a risk assessment to identify likely threats
and how vulnerable the system would be to them. Typical threats may include hardware
or software failures, human errors, power failures, physical damage or theft and software
attacks such as viruses or ransomware. Once risks have been identified, preventative actions
can be taken to address them.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

133

Systems maintenance

Physical attacks can be addressed by putting in place adequate physical access and security
around hardware locations such as server rooms. Where computer centres are used these
will normally have user access controls in place to prevent unauthorised persons gaining
access to the centre, usually involving electronic door access systems. Where PCs, laptops
and smaller IT devices are located in more open environments such as offices, they can be
secured with physical locking mechanisms.

In order to ensure that the system hardware can function unimpeded by power cuts, backup
generators or uninterruptable power supplies can be utilised. For highly critical systems a
disaster recovery plan will be developed to allow an organisation to continue its operations
in the event of a major disruption, which may include maintaining a duplicate system at a
different geographic location which can be put in to operation promptly.

Networks also need to be secured, which involves ensuring data traffic is encrypted and,
in the case of wireless networks, ensuring that security protocols such as Wi-Fi Protected
Access 2 (WPA2) are implemented. In order to prevent unauthorised access to the network
via the Internet a firewall needs to be in place. In addition to firewalls, host and network
intrusion detection systems (HIDS/NIDS) can be used to identify possible threats from
hackers or crackers.

Typical software controls include application permissions which restrict user access to only
specified parts of the system, usually controlled by means of passwords assigned by the system
administrator. Access logs are also used in some situations which log users’ access to the
system and can be used to highlight misuse. The integrity of the system data is vital and is
aided by validation techniques within the software to ensure that only valid data is entered.

Files or database tables can have permissions placed on them which limit a user’s access
rights. Read allows a file to be read, Write allows the file to be written to, Execute allows a
program file to be run. These rights may be assigned to user groups or to individual users.

Operational security revolves around having procedures in place that all staff adhere to in
order to ensure that security is maintained. This covers the safekeeping of passwords and
system outputs such as reports or file copies.

Finally, backup procedures need to be established to ensure that the data and software are
kept safely to allow for recovery in the event of a service disruption. Recovery will involve
reloading program or data files that may have been lost or corrupted. There are four main
approaches to backups:-

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

134

Systems maintenance

134

Full backups where all system files are copied. This method takes the longest and uses the
most storage but does allow for a simpler and quicker recovery.

Incremental backups only back up files that have changed or are new since the last backup
was made. This type of backup is quicker than a full backup and uses less storage but will
take longer to restore as more than one backup may have to be restored.

Differential backups are similar to incremental ones in that they backup files that are new
or have changed since the last full backup. This is faster than a full backup and uses less
storage. Restores can be completed using the last full backup and the last differential backup.

The above backup methods are usually performed monthly, weekly or daily as required.
The backup files should be kept in a safe location away from the in-use versions so as to
minimise the risk of them being lost in the event of a disaster.

Continuous or mirror backups involve mirroring or copying the system files continuously.
This is the costliest approach as the hardware and network infrastructure must support it,
however it does provide for fast restores to a point before a problem was detected.

Download free eBooks at bookboon.com Click on the ad to read more

The Stockholm School of Economics is a
place where talents flourish and grow. As one
of Europe’s top business schools we help you
reach your fullest potential through a first
class, internationally competitive education.

SSE RANKINGS IN FINANCIAL TIMES

No. 1 of all Nordic Business Schools (2013)
No. 13 of all Master in Finance Programs
Worldwide (2014)

The journey starts here
 Earn a Masters degree at the Stockholm School of Economics

Stockholm School of Economics

SSE OFFERS SIX DIFFERENT MASTER PROGRAMS!

APPLY HERE

http://s.bookboon.com/hhs

SYSTEMS ANALYSIS AND DESIGN

135

Systems maintenance

6.5	 SYSTEM TERMINATION

At some point the system will reach the end of its useful life and cease to be of use to
the organisation. This may be because it no longer satisfies the organisation’s operational
requirements, because it has become too costly to maintain, or because new technologies
may offer a better solution. In time a decision will be made to phase the system out and
replace it. If a new one is required, then the SDLC will start over again. The systems analysts,
users and other stakeholders will be consulted to help make the decision.

6.6	 SUMMARY

The system maintenance phase operates from when the system is released for use and
continues until the system is no longer in use. During this phase new users are trained and
the system is maintained in order to deal with any errors or performance issues and also
to add new requirements. System performance is monitored and changes made to address
any issues. System security is vital, and procedures are put in in place to ensure that the
system functions reliably in a safe and secure environment. This includes ensuring suitable
backup procedures are in place to ensure that the system can be restored in the event of a
significant disruption. Eventually, the system will cease to be suitable and a decision may
be made to replace it, which will cause the SDLC to be restarted.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

136

Bibliography

7	 BIBLIOGRAPHY

Agile Models Distilled: Potential Artifacts for Agile Modeling. (n.d.). Retrieved from Agile
Modeling: http://www.agilemodeling.com/artifacts/

agilemanifesto.org. (n.d.). Manifesto for Agile Software Development. Retrieved from
agilemanifesto.org: http://agilemanifesto.org/

Aguanno, K. (n.d.). Retrieved from The AGILEPM: http://agilepm.com/freestuff

Ambler, S.W. (2009–12). The Agile System Development Life Cycle. Retrieved from Ambysoft:
http://www.ambysoft.com/essays/agileLifecycle.html

Beck, K., et al. (2001). Retrieved from http://agilemanifesto.org/: http://agilemanifesto.org/
principles.html

CMMI Institute. (2010, November). http://cmmiinstitute.com/cmmi-models. Retrieved from
CMMI Institute: http://cmmiinstitute.com/system/files/models/CMMI_for_Development_
v1.3.pdf

Connolly, T. &. (2015). Database Systems A Practical Approach to design, Implementation
and Management 6th Ed. Pearson Education.

Gould, H. (2015). Database Design and Implementation A practical introduction using Oracle
SQL. Bookboon.com.

Hay, D., & Lynott, M. (2008). TDAN Newsletter. Retrieved February 23, 2015, from http://
www.tdan.com/view-special-features/8457

International Standards Organisation. (n.d.). Standards catalogue. Retrieved from International
Standards Organisation: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.
htm?commid=45086

Introduction To OMG’s Unified Modeling Language® (UML®). (n.d.). Retrieved from Object
Management Group: http://www.omg.org/

James, M. (n.d.). Scrum Training Series. Retrieved from http://scrumtrainingseries.com/

Download free eBooks at bookboon.com

http://www.agilemodeling.com/artifacts/
http://agilemanifesto.org/
http://agilepm.com/freestuff
http://www.ambysoft.com/essays/agileLifecycle.html
http://agilemanifesto.org/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://cmmiinstitute.com/cmmi-models
http://cmmiinstitute.com/system/files/models/CMMI_for_Development_v1.3.pdf
http://cmmiinstitute.com/system/files/models/CMMI_for_Development_v1.3.pdf
http://www.tdan.com/view-special-features/8457
http://www.tdan.com/view-special-features/8457
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45086
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45086
http://www.omg.org/
http://scrumtrainingseries.com/

SYSTEMS ANALYSIS AND DESIGN

137

Bibliography

137

Mark Dixon. (n.d.). Retrieved from QSEE TECHNOLOGIES:
http://www.leedsbeckett.ac.uk/qsee/

Martin, J. (1991). Rapid Application Development. Macmillan.

Maryland State Government. (n.d.). System Design Document Template. Retrieved from
Maryland.gov: http://doit.maryland.gov/SDLC/Documents/sys_design_doc.doc

Net Present Value. (n.d.). Retrieved from Investopedia: http://www.investopedia.com/calculator/
netpresentvalue.aspx

Object Management Group Business Process Model and Notation. (2014). Retrieved from
OMG: http://www.omg.org/spec/BPMN/2.0.2/

Project Management Institute. (n.d.). Retrieved from Project Management Institute:
http://www.pmi.org/default.aspx

Royce, W. (1970). Managing the Development of Large Software Systems. Proceedings of
IEEE WESCON (pp. 1–9). TRW.

Download free eBooks at bookboon.com Click on the ad to read more

http://www.leedsbeckett.ac.uk/qsee/
http://doit.maryland.gov/SDLC/Documents/sys_design_doc.doc
http://www.investopedia.com/calculator/netpresentvalue.aspx
http://www.investopedia.com/calculator/netpresentvalue.aspx
http://www.omg.org/spec/BPMN/2.0.2/
http://www.pmi.org/default.aspx
http://www.ikea.se/student

SYSTEMS ANALYSIS AND DESIGN

138

Bibliography

Schwalbe, K. (2010). Managing Information Technology Projects 6th Edition. Cengage Learning.

Shneiderman, B. (2010). The Eight Golden Rules of Interface Design. Retrieved from university
of Maryland: http://www.cs.umd.edu/~ben/goldenrules.html

Shneiderman, B., & Plaisant, C. (2010). Designing the User Interface: Strategies for Effective
Human-Computer Interaction: Fifth Edition. Reading, MA: Addison-Wesley Publ. Co.

Software Engineering Institute. (n.d.). Process & Performance Improvement. Retrieved from
Software Engineering Institute Carnegie Mellon University: http://www.sei.cmu.edu/process/

United States government. (n.d.). U.S. Web Design Standards. Retrieved from
https://playbook.cio.gov/designstandards/

What is PRINCE. (n.d.). Retrieved from PRINCE2.com:
https://www.prince2.com/uk/what-is-prince2

Wiegers, K.E. (1999). Retrieved from McMaster University:
www.cas.mcmaster.ca/~carette/SE3M04/2003/files/srs_template.doc

Download free eBooks at bookboon.com

http://www.cs.umd.edu/~ben/goldenrules.html
http://www.sei.cmu.edu/process/
https://playbook.cio.gov/designstandards/
https://www.prince2.com/uk/what-is-prince2
http://www.cas.mcmaster.ca/~carette/SE3M04/2003/files/srs_template.doc

SYSTEMS ANALYSIS AND DESIGN

139

Appendices

8	 APPENDICES

8.1	 APPENDIX A – COST BENEFIT ANALYSIS

In order to help decide whether it would be appropriate to proceed with a particular
information system, a cost benefit analysis (CBA) is normally undertaken for each possible
system proposal. This compares the anticipated costs with the expected benefits. There are a
number of different CBA techniques and this appendix shows some of the popular ones: –
payback analysis, return on investment (ROI) and net present value (NPV).

Payback analysis

This determines the length of time it will take for a system to pay for itself. The time taken
to recoup the costs is called the payback period. The analysis involves working out the
development cost of the system and its annual operating costs. The annual benefit costs are
also worked out. The payback period is found by comparing the accumulated total costs
to the accumulated total benefits. In the example below the payback period is in year 4,
as the cumulative benefits of 123500 exceed the cumulative costs of 116300. Note. Year 0
is the development year, although as the system was implemented within that year some
benefits are accrued.

System 1

Year Costs Cumulative costs Benefits Cumulative benefits

0 50000 50000 2500 2500

1 15000 65000 25500 28000

2 16000 81000 30000 58000

3 17300 98300 32000 90000

4 18000 116300 33500 123500

5 19500 135800 35000 158500

Fig 7.1 Payback analysis

Some organisations set a payback period and if a project does not show a payback within
that time the project may not proceed, even though the benefits may exceed the costs over
a longer period of time.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

140

Appendices

140

It is not ideal to use this method to decide on one system compared to another, as the
overall costs and benefits should be compared for the planned lifetime of the system.

Return on investment analysis (ROI)

The ROI% can be used to measure profitability by comparing the return (total net benefits)
from the system against the investment (the total costs) as follows:-

ROI = ((total benefits – total costs) / total costs) × 100

Using the data from Fig 7.1 above gives: –

((158500 – 135800) / 135800) × 100 = 16.7% ROI

Download free eBooks at bookboon.com Click on the ad to read more

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

http://s.bookboon.com/ericsson

SYSTEMS ANALYSIS AND DESIGN

141

Appendices

Organisations often set a minimum ROI which may be based on the rate they could
obtain by investing the money in other ways, such as an investment bank account. Note.
This approach considers the overall rate of return over the lifetime of the system and does
not consider annual rates of return, which could vary significantly. ROI can be used to
compare different systems proposals. It is, however, worth noting that the timing of the
costs and benefits is not considered. These shortcomings are addressed when carrying out
a net present value analysis.

Net present value (NPV)

The NPV can be used to consider the profitability of a system and is the difference between
the present value of cash income (benefits) and the present value of cash outgoings (costs,
including initial development costs). The time value of money works on the basis that a
unit of currency held now is worth more than the same unit of amount which would be
received in a year’s time, as money currently held can be invested and could be worth more
in the future.

The present value of a future unit amount e.g. $ or £, is the amount of money invested
at a specific interest rate today which grows to become the future unit value at a specified
future point in time. This specified interest rate is referred to as the discount rate. An
organisation will choose a discount rate that represents the expected rate of return from
investing in a safe form of investment such as a savings account, rather than invested in a
new system. Organisations normally expect to see a rate of return that is higher than the
discount rate in order to take account of the increased risk of developing a new system
rather than just investing the money. The NPV formula involves multiplying each of the
incomes and outgoings by the relevant present value factor which is based on the year
the incomes/outgoings will happen. Then all the time-adjusted incomes and outgoings are
totalled. Finally, the NPV can be calculated by subtracting the total present value of the
costs from the total present value of the benefits

NPV = ∑ {Net Period Cash Flow/(1+R)^T} – Initial Investment

where R is the rate of return and T is the number of time periods.

For example, take a project with an initial cost of £20,000 over 3 years with a discount
rate of 3.5%.

NPV = {£2,000/(1+.035)^1} + {£10,000/(1+.035)^2} + {£12,000/(1+.035)^3} – £20,000
= £1932.37 + £9335.11 + £10823.31 – £20,000
= £2090.79

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

142

Appendices

To assist with the present value analysis, present value tables are available which show
values at various rates over a number of years. There are also Internet calculators available
(Net Present Value, n.d.)and spreadsheet software such as Microsoft® Excel can be used for
the calculations.

If the NPV value is positive, the system would be feasible as it would return more money
than the amount invested, however all development projects have risks and so organisations
will still need to consider the return carefully. NPV analysis can be used to compare different
system proposals.

8.2	 APPENDIX B – NORMALISATION TEMPLATE

UNF 1NF 2NF 3NF Relation / Table
Name

1. List all the
attributes below
from a single
document / table.
2. Identify the
unique identifier /
primary key.
Show in bold or
colour. May need
an artificial key.
3. Identify any
repeating
attribute
group(s). Show
inside (….) or
colour.

1. Place repeated
attribute group(s)
if any in a new
relation.
2. Include the
UNF unique
identifier as a
foreign key in the
new relation.
3. Identify the
additional
attribute(s) in the
new relation to
form a compound
key with the
foreign key.

1. Remove any
part key
dependent
attributes to a
new relation.
2. Identify
identifier for each
new relation.
3. Include foreign
key in the
original relation.

1. Remove any
non-key
dependent
attributes to a
new relation(s).
2. Identify the
unique identifier
for the new
relation(s).
3. Include a
foreign key in the
original relation.

Assign a suitable
name for each
relation/table.

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

143

Appendices

143

8.3	 APPENDIX C – PROJECT MANAGEMENT

In traditional systems development projects, the analyst or a project manager will be
responsible for managing the project, including planning, scheduling, monitoring and
reporting to relevant stakeholders. Project management focusses on managing the balance
of costs, time and project scope, sometimes referred to as the project triangle, as a change
to one of the three will affect the other two.

Project management involves identifying the tasks to be carried out and producing a work
breakdown structure (WBS). The WBS is used to produce a Gantt chart which shows
the schedule of tasks on a horizontal bar chart. Program Evaluation Review Technique
(PERT) and Critical Path Method (CPM) are two important techniques used to calculate
the length of the project and show the critical path which is made up of the sequence of
activities that add up to the longest overall duration. This determines the minimum time
possible in which to complete the project.

Download free eBooks at bookboon.com Click on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

SYSTEMS ANALYSIS AND DESIGN

144

Appendices

A work breakdown structure is formed by breaking down all the main activities in the
SDLC into smaller tasks and assigning them a duration, costs and resources, e.g. staffing.
In addition to the tasks there are also milestones, important events occurring at a set point.
These are used to monitor progress and usually involve attention from stakeholders. A
milestone may be used to signal the end of a deliverable such as “testing completed”. Tasks
may be dependent on other tasks e.g. one task cannot start until another has finished.

The following example shows the work breakdown structure for a system development
project in the form of a Gantt chart using Microsoft project professional 2016. The main
activities are shown in the Task name column and each of these higher level activities can
be expanded to show their lower level tasks, as shown for the activity “Analysis/Software
Requirements”, which reveals 9 sub tasks. The horizontal bars to the right of the tasks
indicate the task duration in days. The small arrow exiting a task bar indicates that when
this preceding task is completed the task being pointed to can start. Note. In most projects
there will be some tasks that can run in parallel e.g. testing, where different modules may be
undergoing testing at the same time. Milestones are shown as black diamonds and indicate
a project check point which usually has no duration.

WBS Schedule

Fig 7.2 Example system development Gantt chart

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

145

Appendices

WBS tasks may be arrived at either using a top-down approach of breaking down high level
activities such as an SDLC phase, or using a bottom up approach which involves identifying
all the tasks and then grouping them under higher level activities. Where a similar project
has been undertaken it may be possible to utilise an existing WBS template. Accurate task
duration estimation can be difficult although experienced analysts and project managers
will find this easier.

When all the tasks have been entered the CPM, which is also called the critical path analysis,
can be performed in order to identify the critical path for the project. This is the series of
activities which determines the earliest time the project can be completed. It is in effect the
longest path through the project with the least amount of slack or float – the amount of
time that a task can be delayed without delaying a succeeding activity or the whole project.

The critical path can be calculated by using a network diagram which is derived
from the WBS.

There are two types of network diagram, activity-on-arrow (AOA) or arrow diagramming
method (ADM) and the precedence diagramming method (PDM) or activity-on
node (AON).

1

2

3

4

5

6

7 8

A = 2
D = 2

H = 2

C = 1

G = 5

B = 2 F = 5

E = 4

I = 6

J = 3

Fig 7.3 Activity-on-arrow (AOA) network diagram

The activities are labelled A-J and their durations are shown in days.

This gives the following paths:

1.	A-D-H-J	 2+2+2+3 = 9 days
2.	B-E-J		 2+4+3 = 9 days
3.	B-F-I-J	 2+5+6+3 = 16 days
4.	C-G-I-J	 1+5+6+3 = 15 days

Download free eBooks at bookboon.com

SYSTEMS ANALYSIS AND DESIGN

146

Appendices

146

Therefore, the critical path is path 3 which is 16 days – the longest path through the network.

The precedence diagram method shows the activities within boxes with the arrows
linking them.

The example precedence diagramming method network diagram below, which was produced
using Microsoft Project, shows the same activities as used in the network diagram above.
Each activity is shown as a box which contains the task start date, finish date and duration.
The activities highlighted in red are critical activities which cannot slip without affecting
the overall project deadline.

Download free eBooks at bookboon.com Click on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

SYSTEMS ANALYSIS AND DESIGN

147

Appendices

Fig 7.4 Precedence diagramming method network diagram (AON)

The schedule with the planned dates is referred to as the baseline schedule and the analyst
or project manager would use the Gantt chart to track the project’s progress. Actual dates
of task completion would be recorded at regular intervals so as to help track the project
and to enable remedial action to be taken to minimise problems if milestones are missed.

Note. Project management software tools include the facility to record a project plan and
the progress made against it and also make it easy to produce reports for distribution to
relevant stakeholders.

Agile project management

In an Agile development environment, the long cycle of the conventional waterfall model is
broken down into small segments of the product which are specified, developed and tested in
more manageable periods of two to four weeks. By receiving continuous feedback, problems
can be dealt with much earlier. The product owner handles project goals and balances the
schedule against the scope, prioritising product features. The scrum master helps the team
to prioritise their tasks and the team members deal with the task assignment, progress
reporting and product quality control.

Further reading
(Schwalbe, 2010)
(What is PRINCE, n.d.)
(Project Management Institute, n.d.)
(Aguanno, n.d.)

Download free eBooks at bookboon.com

	Acknowledgements
	Foreword
	1	�Introduction to systems analysis and design
	1.1	What is an information system?
	1.2	The system development life cycle
	1.3	Summary

	2	Systems analysis
	2.1	Requirements modelling
	2.2	Functional decomposition
	2.3	Identifying functions and processes
	2.4	Dataflow diagram notation
	2.5	Drawing a physical DFD
	2.6	DFD errors
	2.7	Drawing a logical DFD
	2.8	Levelled data flow diagrams
	2.9	The context (level 0) diagram
	2.10	The data dictionary
	2.11	Process specification
	2.12	Decision trees
	2.13	Decision tables
	2.14	Structured English
	2.15	Requirements catalogue
	2.16	Summary

	3	Object oriented analysis
	3.1	Objects and classes
	3.2	Use case modelling
	3.3	Class diagram
	3.4	Sequence diagrams
	3.5	State machine diagrams
	3.6	Activity diagrams
	3.7	Business process modelling
	3.8	Summary

	4	Systems design
	4.1	Data design
	4.2	Entity modelling
	4.3	Normalisation
	4.4	Identifying relations
	4.5	Data table structures
	4.6	Human-computer interaction
	4.7	System architecture
	4.8	Network topology
	4.9	Design documentation
	4.10	Summary

	5	Systems implementation
	5.1	Software design
	5.2	Software development and testing
	5.3	Documentation and training
	5.4	System changeover
	5.5	Summary

	6	Systems maintenance
	6.1	User support and training
	6.2	Software maintenance
	6.3	System performance
	6.4	System security
	6.5	System termination
	6.6	Summary

	7	Bibliography
	8	Appendices
	8.1	Appendix A – Cost benefit analysis
	8.2	Appendix B – Normalisation template
	8.3	Appendix C – Project Management

